• 제목/요약/키워드: multimodal medical image fusion

검색결과 7건 처리시간 0.026초

Multimodal Medical Image Fusion Based on Sugeno's Intuitionistic Fuzzy Sets

  • Tirupal, Talari;Mohan, Bhuma Chandra;Kumar, Samayamantula Srinivas
    • ETRI Journal
    • /
    • 제39권2호
    • /
    • pp.173-180
    • /
    • 2017
  • Multimodal medical image fusion is the process of retrieving valuable information from medical images. The primary goal of medical image fusion is to combine several images obtained from various sources into a distinct image suitable for improved diagnosis. Complexity in medical images is higher, and many soft computing methods are applied by researchers to process them. Intuitionistic fuzzy sets are more appropriate for medical images because the images have many uncertainties. In this paper, a new method, based on Sugeno's intuitionistic fuzzy set (SIFS), is proposed. First, medical images are converted into Sugeno's intuitionistic fuzzy image (SIFI). An exponential intuitionistic fuzzy entropy calculates the optimum values of membership, non-membership, and hesitation degree functions. Then, the two SIFIs are disintegrated into image blocks for calculating the count of blackness and whiteness of the blocks. Finally, the fused image is rebuilt from the recombination of SIFI image blocks. The efficiency of the use of SIFS in multimodal medical image fusion is demonstrated on several pairs of images and the results are compared with existing studies in recent literature.

이중스케일분해기와 미세정보 보존모델에 기반한 다중 모드 의료영상 융합연구 (Multimodal Medical Image Fusion Based on Two-Scale Decomposer and Detail Preservation Model)

  • 장영매;이효종
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.655-658
    • /
    • 2021
  • The purpose of multimodal medical image fusion (MMIF) is to integrate images of different modes with different details into a result image with rich information, which is convenient for doctors to accurately diagnose and treat the diseased tissues of patients. Encouraged by this purpose, this paper proposes a novel method based on a two-scale decomposer and detail preservation model. The first step is to use the two-scale decomposer to decompose the source image into the energy layers and structure layers, which have the characteristic of detail preservation. And then, structure tensor operator and max-abs are combined to fuse the structure layers. The detail preservation model is proposed for the fusion of the energy layers, which greatly improves the image performance. The fused image is achieved by summing up the two fused sub-images obtained by the above fusion rules. Experiments demonstrate that the proposed method has superior performance compared with the state-of-the-art fusion methods.

복층 분해기와 상세구조 보존모델에 기반한 다중모드 의료영상 융합 (Multimodal Medical Image Fusion Based on Double-Layer Decomposer and Fine Structure Preservation Model)

  • 장영매;이효종
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제11권6호
    • /
    • pp.185-192
    • /
    • 2022
  • 다중모드 의료영상 융합(MMIF)은 각기 다른 특징들을 나타내는 여러 종류의 모드의 이미지를 풍부한 정보가 포함된 하나의 결과 이미지로 통합하는 것이다. 이러한 의료영상 융합은 의사가 환자의 병변을 정확하게 관찰하고 치료하는 것을 도와줄 수 있다. 이러한 목적에 영향을 받아 본 논문에서는 복층 분해기 및 미세구조 보존 모델에 기반한 새로운 방법을 제안한다. 첫째, 복층 분해기를 사용하여 소스 이미지를 미세정보 보존의 특성을 갖는 에너지 층과 구조적 층으로 분해하였다. 둘째, 구조 텐서 연산자와 max-abs를 결합하여 구조적 층을 융합한다. 에너지 층의 융합을 위해 미세구조 보존 모델을 제안하였으며 이미지 융합성능을 크게 향상시킬 수 있었다. 마지막으로, 융합규칙을 통해 형성된 두 개의 융합된 하위 이미지를 합산하여 구축하였다. 실험을 통하여 제안된 방법이 현재까지 최첨단 융합 방법들과 비교하여 우수한 성능을 나타내는 것을 검증하였다.

MOSAICFUSION: MERGING MODALITIES WITH PARTIAL DIFFERENTIAL EQUATION AND DISCRETE COSINE TRANSFORMATION

  • GARGI TRIVEDI;RAJESH SANGHAVI
    • Journal of Applied and Pure Mathematics
    • /
    • 제5권5_6호
    • /
    • pp.389-406
    • /
    • 2023
  • In the pursuit of enhancing image fusion techniques, this research presents a novel approach for fusing multimodal images, specifically infrared (IR) and visible (VIS) images, utilizing a combination of partial differential equations (PDE) and discrete cosine transformation (DCT). The proposed method seeks to leverage the thermal and structural information provided by IR imaging and the fine-grained details offered by VIS imaging create composite images that are superior in quality and informativeness. Through a meticulous fusion process, which involves PDE-guided fusion, DCT component selection, and weighted combination, the methodology aims to strike a balance that optimally preserves essential features and minimizes artifacts. Rigorous evaluations, both objective and subjective, are conducted to validate the effectiveness of the approach. This research contributes to the ongoing advancement of multimodal image fusion, addressing applications in fields like medical imaging, surveillance, and remote sensing, where the marriage of IR and VIS data is of paramount importance.

Multimodal Data Fusion for Alzheimers Patients Using Dempster-Shafer Theory of Evidence

  • Majumder, Dwijesh Dutta;Bhattacharya, Nahua
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.713-718
    • /
    • 1998
  • The paper is part of an investigation by the authors on development of a knowledge based frame work for multimodal medical image in collaboration with the All India Institute of Medical Science, new Delhi. After presenting the key aspects of the Dempster-Shafer Evidence theory we have presented implementation of registration and fusion of T₁and T₂ weighted MR images and CT images of the brain of an Alzheimer's patient for minimising the uncertainty and increasing the reliability for dianostics and therapeutic planning.

  • PDF

Development of a Brain Phantom for Multimodal Image Registration in Radiotherapy Treatment Planning

  • H. S. Jin;T. S. Suh;R. H. Juh;J. Y. Song;C. B. Y. Choe;Lee, H .G.;C. Kwark
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2002년도 Proceedings
    • /
    • pp.450-453
    • /
    • 2002
  • In radiotherapy treatment planning, it is critical to deliver the radiation dose to tumor and protect surrounding normal tissue. Recent developments in functional imaging and radiotherapy treatment technology have been raising chances to control tumor saving normal tissues. A brain phantom which could be used for image registration technique of CT-MR and CT-SPECT images using surface matching was developed. The brain phantom was specially designed to obtain imaging dataset of CT, MR, and SPECT. The phantom had an external frame with 4 N-shaped pipes filled with acryl rods, Pb rods for CT, MR, and SPECT imaging, respectively. 8 acrylic pipes were inserted into the empty space of the brain phantom to be imaged for geometric evaluation of the matching. For an optimization algorithm of image registration, we used Downhill simplex algorithm suggested as a fast surface matching algorithm. Accuracy of image fusion was assessed by the comparison between the center points of the section of N-shaped bars in the external frame and the inserted pipes of the phantom and minimized cost functions of the optimization algorithm. Technique with partially transparent, mixed images using color on gray was used for visual assessment of the image registration process. The errors of image registration of CT-MR and CT-SPECT were within 2mm and 4mm, respectively. Since these errors were considered within a reasonable margin from the phantom study, the phantom is expected to be used for conventional image registration between multimodal image datasets..

  • PDF

Quantitative Feasibility Evaluation of 11C-Methionine Positron Emission Tomography Images in Gamma Knife Radiosurgery : Phantom-Based Study and Clinical Application

  • Lim, Sa-Hoe;Jung, Tae-Young;Jung, Shin;Kim, In-Young;Moon, Kyung-Sub;Kwon, Seong-Young;Jang, Woo-Youl
    • Journal of Korean Neurosurgical Society
    • /
    • 제62권4호
    • /
    • pp.476-486
    • /
    • 2019
  • Objective : The functional information of $^{11}C$-methionine positron emission tomography (MET-PET) images can be applied for Gamma knife radiosurgery (GKR) and its image quality may affect defining the tumor. This study conducted the phantom-based evaluation for geometric accuracy and functional characteristic of diagnostic MET-PET image co-registered with stereotactic image in Leksell $GammaPlan^{(R)}$ (LGP) and also investigated clinical application of these images in metastatic brain tumors. Methods : Two types of cylindrical acrylic phantoms fabricated in-house were used for this study : the phantom with an array-shaped axial rod insert and the phantom with different sized tube indicators. The phantoms were mounted on the stereotactic frame and scanned using computed tomography (CT), magnetic resonance imaging (MRI), and PET system. Three-dimensional coordinate values on co-registered MET-PET images were compared with those on stereotactic CT image in LGP. MET uptake values of different sized indicators inside phantom were evaluated. We also evaluated the CT and MRI co-registered stereotactic MET-PET images with MR-enhancing volume and PET-metabolic tumor volume (MTV) in 14 metastatic brain tumors. Results : Imaging distortion of MET-PET was maintained stable at less than approximately 3% on mean value. There was no statistical difference in the geometric accuracy according to co-registered reference stereotactic images. In functional characteristic study for MET-PET image, the indicator on the lateral side of the phantom exhibited higher uptake than that on the medial side. This effect decreased as the size of the object increased. In 14 metastatic tumors, the median matching percentage between MR-enhancing volume and PET-MTV was 36.8% on PET/MR fusion images and 39.9% on PET/CT fusion images. Conclusion : The geometric accuracy of the diagnostic MET-PET co-registered with stereotactic MR in LGP is acceptable on phantom-based study. However, the MET-PET images could the limitations in providing exact stereotactic information in clinical study.