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Abstract 

The purpose of multimodal medical image fusion (MMIF) is to integrate images of different modes with 

different details into a result image with rich information, which is convenient for doctors to accurately diagnose 

and treat the diseased tissues of patients. Encouraged by this purpose, this paper proposes a novel method based on 

a two-scale decomposer and detail preservation model. The first step is to use the two-scale decomposer to 

decompose the source image into the energy layers and structure layers, which have the characteristic of detail 

preservation. And then, structure tensor operator and max-abs are combined to fuse the structure layers. The detail 

preservation model is proposed for the fusion of the energy layers, which greatly improves the image performance. 

The fused image is achieved by summing up the two fused sub-images obtained by the above fusion rules. 

Experiments demonstrate that the proposed method has superior performance compared with the state-of-the-art 

fusion methods. 

keywords: multimodal medical image fusion; two-scale decomposer; detail preservation model. 

 

1. Introduction 

With the development of various imaging devices, multi-

modal medical image fusion has become an important 

research topic for obtaining accurate clinical information that 

can be provided to physicians for better diagnosis [1]. 

Relying only on a single modality medical image is 

insufficient for diagnosing a patient's condition. For example, 

the computed tomography (CT) image can capture tissue 

information of dense structures, such as bones and implants, 

but cannot provide detailed information of soft tissue. The 

magnetic resonance (MR) images display soft-tissue anatomy 

information with high spatial resolution but fail to detect 

human metabolic activity information. Therefore, the fusion 

of medical images of different modalities into an integrated 

image that includes the useful feature information of the two 

source images is in line with the times [2]. 

In the past few decades, multi-scale transformation (MST), 

the term, has become more and more popular in the field of 

image fusion since MST can decompose two source images 

into two sub-layers, each of which contains image features 

from the source images. Generally speaking, the fusion rules 

constructed based on these image features will result in a 

fusion image with good performance [3]. The more typical 

MST algorithms are complex wavelet transforms (CVT) [4], 

nonsubsampled contourlet transform (NSCT) [5], and dual-

tree complex wavelet transform (DTCWT) [5]. Although 

these methods mentioned above can extract more image 

features, a fact that cannot be ignored is that the fused image 

has artifacts in the edge area, causing image distortion. This 

phenomenon occurs because the spatial consistency between 

images is not considered into the image decomposition 

process. As for the fusion rule, “absolute maximum” and 

“averaging” were the most commonly used single rules in 

earlier years. Their principle is to take the maximum and 

average values of all pixels in a sliding window of a certain 

scale. Obviously, this kind of rule will definitely damage the 

quality of the fused image. In recent years, the first 

application of sparse representation (SR) to image fusion by 

Yang et al. [6] is very popular because of its good effect. 

However, time-consuming has always been the weakness of 

the SR method due to the real-time training of a complete 

dictionary. 

Inspired by the above contents, in this work, a novel 
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multimodal medical image fusion based on two-scale 

decomposer and detail preservation model is proposed, 

which obtain a good performance and high efficiency. 

The remainder of this paper is listed as follows. Section II 

describes the proposed MMIF algorithm in detail. The 

experimental analysis is given in Section III. The conclusions 

are presented in Section IV. 

 

2. The proposed method 

2.1 overall framework 

In this section, we will introduce the overall framework of 

the proposed method in detail, which are shown in Fig. 1. 

Assume that A and B represent the source images. The first 

step is to use the proposed two-scales decomposer (TSD) to 

decompose the source image into the energy 

layers(E_A/E_B) and structure layers(S_A/S_B). And then, 

STO and Max-abs are combined to fusing the structure layers, 

the detail preservation model is proposed for the fusion of the 

energy layers. The fused image is achieved by summing up 

the two fused sub-images obtained by the above fusion rule. 

The detailed description of the algorithm will be explained in 

the next section. 

2.2 TSD 

In this part, a TSD is proposed to guide the decomposition 

process. The first step is to use a weighted average Gaussian 

filter to smooth the image, the purpose of which is to 

maximize the useful features of the input image to the 

decomposition structure layer. Next, to recover some small-

scale image features that were deleted by the Gaussian 

filtering operation, guidance filtering (GF) is applied, and 

thus the energy layers will be obtained through these two 

steps. Logically, the structure layer is generated by 

subtracting the energy layer from the source image. The 

algorithm of this part can be defined as: 
2
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where I and j denote pixel coordinates, 

_ ( ), ( ), ( ), sGM R I N j   , and r  denote the output of the 

Gaussian filter, the input images, the set of neighbor pixels of 

i, spatial weight, and range weight, respectively. 
jZ  is the 

normalization operation. In this study, ,s r   are assigned 

as 2 and 0.05, respectively. 

2.3 Fusion 

As for the fusion part, structure tensor operator (STO) and 

max-abs are combined to fuse the structural layer containing 

rich gradient information. On the one hand, STO is proven to 

be able to extract image gradients effectively, on the other 

hand, max-abs can extract salient features. Therefore, 

combining these two advantages can ensure that the source 

image information is transferred to the fusion image to the 

greatest extent. The rule is designed as follows: 

_ ( ) 

max( ( _ ), ( _ ))

S R STO R

FS abs S A abs S B

=

=
         (4) 

where { , }R A B , and FS denotes the fused images of the 

structure layer. 

For the energy layer, a detail preservation model is 

proposed, which can keep the details well. We first take the 
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Fig. 1 The red dashed box represents the overall framework of the proposed method. The blue and purple dashed boxes show the details of TSD and 
DPM, respectively. 
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Max-abs of the energy layers to get the intensity maps(M_R) 

and then add them to the visual saliency map [8] 

corresponding to the input images to get a supplementary 

map (SM_R) to ensure a better structure. The rule is shown 

as: 

_ ( _ _ )

_ _

X RSM R M X V X

FE SM R E R

= +

= 

         (5) 

where FE denotes the fused energy layer. 

Following the fusion rule, the final fusion image(F) is 

obtained through addition operation between FS and FE: 

F FS FE= +                     (6) 

3. Experiments 

To illustrate the effectiveness of the proposed method, in 

this section, five mainstream methods are compared with the 

proposed algorithm, together with four recognized objective 

indicators are introduced. They are CVT [4], NSCT [5], 

DTCWT [5], phase congruency and local laplacian energy 

(PC-LLE) [2], and adaptive pulse coupled neural network in 

nonsubsampled shearlet transform domain (PAPCNN) [1], 

respectively. Six metrics including edge reservation (QABF) 

[9], structure similarity-based (SSIM) [10], average gradient 

(AG) [11], and human vision perception-based metrics 

(QCB) [12]. The higher the indexes value, the better the 

algorithm performance. All the experiments are conducted in 

MATLAB R2017b. The dataset is downloaded from the 

Whole Brain Atlas database of Harvard Medical School, 

http://www.med.harvard.edu/aanlib/ home.html. 

Fig. 2 shows the MR-T1/MR-T2 and PET/MRI images 

fused results produced by six different methods. From these 

fusion results, we can observe that the contrast of the results 

produced by DTCWT, NSCT and CVT are reduced a lot. 

While the contrast of PAPCNN and PC-LLE are significantly 

enhanced, but the detail texture of the organ tissue is missing 

compared to the proposed method (see the blue zoomed box). 

Moreover, our result has no artifacts, which can be proved 

from the red magnified area of Fig. 2(h1). As for the 

PET/MRI image pairs, a conclusion similar to Fig. 2(a) 

achieves that the image performance obtained by our method 

is better than other five since more details are extracted from 

the original images, which can be verified from the image 

features in the red and blue magnified area. 

The objective indexes are also measured and are shown in 

 
                         (a) MR-T1/MR-T2 image pairs              (b) PET/MRI image pairs 

 
   (c1) DTCWT          (d1) NSCT            (e1) CVT           (f1) PAPCNN          (g1) PC-LLE           (h1) Ours 

 
   (c2) DTCWT          (d2) NSCT            (e2) CVT            (f2) PAPCNN         (g2) PC-LLE          (h2) Ours 

Fig. 2. The fused images by using six different fusion methods with two typical image pairs. (a) is MR-T1/MR-T2 image pairs, (b) PET/MRI image 

pairs, (c1)-(h1) are the fused results by DTCWT, NSCT, CVT, PAPCNN, PC-LLE and ours on the MR-T1/MR-T2 image pairs. (c2)-(h2) are the fused 

results on the PET/MRI image pairs. 

Table I The objective indexes on the image pairs from Fig. 2. Red: maximum values; Blue: second largest values. 

Methods 
MR-T1/MR-T2 image pairs PET/MRI image pairs 

CVT DTCWT NSCT PAPCNN PC-LLE Ours CVT DTCWT NSCT PAPCNN PC-LLE Ours 

QABF 0.4498 0.6138 0.6600 0.6053 0.6570 0.6813 0.4532 0.6095 0.6630 0.6515 0.6842 0.7767 

SSIM 0.4988 0.7379 0.8016 0.7285 0.7637 0.8169 0.4823 0.6862 0.6431 0.6869 0.7543 0.9009 

AG 7.6474 7.3823 7.5654 8.7383 8.6799 9.5689 9.1202 8.9614 9.8729 10.2941 10.3887 10.8902 

QCB 0.4953 0.6212 0.6556 0.6637 0.6739 0.6756 0.4559 0.5850 0.5699 0.5949 0.6246 0.6852 
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Table I. From the results, our method achieves the maximum 

value of all indicators. At the same time, in order to further 

demonstrate the effectiveness of our method, we performed 

an average operation on 10 sets of images, as shown in Fig. 

3. As can be seen from the figure, our results have achieved 

superior results in the vast majority of images including the 

average value (the last column). 

 

4. Conclusion 

In this paper, a novel multimodal medical image fusion is 

proposed. The input images are decomposed by the TSD 

method into the structure layers and energy layers. Two 

fusion rules are designed based on STO and DPM to fusing 

the corresponding image layers, respectively. The subjective 

results and objective indicators observed in the experiment 

show that our method has a better image performance 

compared to several mainstream comparison methods. 
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Fig. 3 The quantitative index diagram of 10 groups of images. The last column, that is, the eleventh column, is the average value of the first 10 groups of 

images. 
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