• Title/Summary/Keyword: multimeric forms

Search Result 10, Processing Time 0.027 seconds

Purification of Recombinant CTP-Conjugated Human prostatic acid phosphatase for activation of Dendritic Cell (수지상세포 활성화를 위한 세포투과 펩타이드가 결합된 재조합 전립성 산성 인산분해효소의 정제)

  • Yi, Ki-Wan;Ryu, Kang
    • KSBB Journal
    • /
    • v.24 no.1
    • /
    • pp.80-88
    • /
    • 2009
  • Human prostatic acid phosphatase (PAP), with comprehensive homology to glandular kallikrein, are representative serum biomarkers of prostate cancer. Dendritic cell (DC), which is the potent antigen-presenting cells(APC) in the immune system, can induce strong T cell responses against viruses, microbial pathogens, and tumors. Therefore, the immunization using DC loaded with tumor-associated antigens is a powerful method for inducing anti-tumor immunity. The CTP (Cytoplasmic Transduction Peptide) technology developed by Creagene which can transport attached bio-polymers like nucleic acids or proteins into the cell with high permeation efficiency. As the active forms of PAP can mediate apoptotic processing, we used multimer forms of PAP as an inactive form for antigen pulsing of DCs. In this study, multimeric forms of CTP-rhPAP was obtained according to the advanced purification process and subsequently confirmed by gel filtration chromatography, western blot and Dynamic Light Scattering. Therefore, CTP-conjugated PA multimers transduced into the cytoplasm were efficiently presented on the cell surface without any harm effect on cells via MHC class I molecules and result in induction of a large number of effector cell.

Evidence of Multimeric Forms of HSP70 with Phosphorylation on Serine and Tyrosine Residues - Implications for Roles of HSP70 in Detection of GI Cancers

  • Dutta, Anand;Girotra, Mohit;Merchant, Nipun;Nair, Padmanabhan;Dutta, Sudhir Kumar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.5741-5745
    • /
    • 2013
  • Background: Heat-shock protein70 (HSP70) are intracellular protein chaperones, with emerging evidence of their association with various diseases. We have previously reported significantly elevated plasma-HSP70 (pHSP70) in pancreatic cancer. Current methods of pHSP70 isolation are ELISA-based which lack specificity due to cross-reactivity by similarities in the amino-acid sequence in regions of the protein backbone resulting in overestimated HSP70 value. Materials and Methods: This study was undertaken to develop a methodology to capture all isoforms of pHSP70, while further defining their tyrosine and serine phosphorylation status. Results: The methodology included gel electrophoresis on centrifuged supernatant obtained from plasma incubated with HSP70 antibody-coupled beads. After blocking non-specific binding sites, blots were immunostained with monoclonal-antibody specific for human-HSP70, phosphoserine and phosphotyrosine. Conclusions: Our novel immunocapture approach has distinct advantages over the commercially available methods of pHSP70 quantification by allowing isolation of molecular aggregates of HSP70 with additional ability to precisely distinguish phosphorylation state of HSP70 molecules at serine and tyrosine residues.

NMR Structure of Syndecan-4L reveals structural requirement for PKC signalling

  • Koo, Bon-Kyoung;Joon Shin;Oh, Eok-Soo;Lee, Weontae
    • Proceedings of the Korean Magnetic Resonance Society Conference
    • /
    • 2002.08a
    • /
    • pp.90-90
    • /
    • 2002
  • Syndecans, transmembrane heparan sulfate proteoglycans, are coreceptors with integrin in cell adhesion process. It forms a ternary signaling complex with protein kinase C and phosphatidylinositol 4,5 bisphosphate (PIP2) for integrin signaling. NMR data indicates that cytoplasmic domain of syndecan-4 (4L) undergoes a conformational transition in the presence of PIP2, forming oligomeric conformation. The structure based on NMR data demonstrated that syndecan-4L itself forms a compact intertwined symmetric dimer with an unusual clamp shape for residues Leu$^{186}$ -Ala$^{195}$ . The molecular surface of the syndecan-4L dimer is highly positively charged. In addition, no inter-subunit NOEs in membrane proximal amino acid resides (Cl region) has been observed, demonstrating that the Cl region is mostly unstructured in syndecan-4L dimmer. However, the complex structure in the presence of PIP2 induced a high order multimeric conformation in solution. In addition, phosphorylation of cytoplasmic domain induces conformational change of syndecan-4, resulting inhibition of PKC signaling. The NMR structural data strongly suggest that PIP2 promotes oligomerization of syndecan-4 cytoplasmic domain for PKC activation and further induces structural reorganization of syndecan for mediating signaling network in cell adhesion procedure.

  • PDF

A Novel Behavior, Bang-Sensitive Paralysis, Associated With The shibire Locus of Drosophila melanogaster

  • 김윤택
    • Environmental Mutagens and Carcinogens
    • /
    • v.10 no.2
    • /
    • pp.93-106
    • /
    • 1990
  • The Drosophila temperature-sensitive mutant shibire (shi) is paralyzed at restrictive temperature by a reversible block in synaptic transmission. To explore the functional relationship among shi gene products, viability and temperature-sensitive paralytic behavior were quantitaively analyzed for four shi alleles, shi$^{ts1}$, shi$^{ts2}$, shi$^{ts4}$, and shi$^{ST139}$, and their heteroallelic combinations. The hemizygous combination of shi alleles over deficiency was not completely lethal. shi$^{ts2}$ exhibited distinctively higher viability than other alleles. A novel behavior, bang sensitivity, was also found in shi/Df(1). This bang-sensitive paralytic behavior was compared with that of the typical bang-sensitive mutant flies. Heterozygotes, shi/+, are more severe in temperature sensitivity than deficiency hemizygotes, Df(1)/+. Heteroallelic combinations of shi were less sensitive to high temperature than homozygotes. Among all allelic combinations, shi$^{ts2}$/shi$^{ts4}$ showed an unexpected extreme reduction in temperature sensitivity. The results of allelic interactions among 4 shi alleles suggest that the shi mutations examined behave as antimorphic alleles and that the gene product of shi are likely to function in multimeric forms.

  • PDF

Isolation and characterization of corynebacteria-E. coli shuttle vector pKU6 from coryneform bacteria (Corynebacteria-E. coli shuttle vector pKU6의 분리 및 확인)

  • 허태린;이진우;이세영
    • Korean Journal of Microbiology
    • /
    • v.22 no.4
    • /
    • pp.249-255
    • /
    • 1984
  • To develop the host-vector system for industrial Coryneform bacteria that seemed to be the most suitable microorganisms for molecular breeding of genes involved in the production of amion acids, nucleotides, and other products of industrial interest, broad host range E. coli plasmid R 1162 DNA was transformed into Brevibacterium ammoniagenes and the plasmids pKU6 isolated from a transformant was physically characterized. All other plasmids from the transformed cells except pKU6 exsisted as multimeric forms in Brevibacterium ammoniagenes. The plasmid DNA was retransformed into Corynebacterium glutamicum with a high frequency ($1.32{\times}10^{-1}$ per cell) and maintained stably both in Brevibacterium ammoniagenes and Corynebacterium glutamicum after 100 generations of cultures with 25-30 copy number per cell. The size of both plasmid pKU6 and plasmid R1162 were the same and restriction maps by EcoR I, Ava I, Pst I, Pvu II and Hinc II were also similar.

  • PDF

Potentiation of TRAIL killing activity by multimerization through isoleucine zipper hexamerization motif

  • Han, Ji Hye;Moon, Ae Ran;Chang, Jeong Hwan;Bae, Jeehyeon;Choi, Jin Myung;Lee, Sung Haeng;Kim, Tae-Hyoung
    • BMB Reports
    • /
    • v.49 no.5
    • /
    • pp.282-287
    • /
    • 2016
  • Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a homo-trimeric cytotoxic ligand. Several studies have demonstrated that incorporation of artificial trimerization motifs into the TRAIL protein leads to the enhancement of biological activity. Here, we show that linkage of the isoleucine zipper hexamerization motif to the N-terminus of TRAIL, referred as ILz(6):TRAIL, leads to multimerization of its trimeric form, which has higher cytotoxic activity compared to its native state. Size exclusion chromatography of ILz(6):TRAIL revealed possible existence of various forms such as trimeric, hexameric, and multimeric (possibly containing one-, two-, and multi-units of trimeric TRAIL, respectively). Increased number of multimerized ILz(6):TRAIL units corresponded with enhanced cytotoxic activity. Further, a high degree of ILz(6):TRAIL multimerization triggered rapid signaling events such as activation of caspases, tBid generation, and chromatin condensation. Taken together, these results indicate that multimerization of TRAIL significantly enhances its cytotoxic activity.

Multimerization of Bovine Thyroglobulin, Partially Unfolded or Partially Unfolded/Reduced; Involvement of Protein Disulfide Isomerase and Glutathionylated Disulfide Linkage

  • Liu, Xi-Wen;Sok , Dai-Eun
    • Archives of Pharmacal Research
    • /
    • v.27 no.12
    • /
    • pp.1275-1283
    • /
    • 2004
  • Fate of the nascent thyrolglobulin (Tg) molecule is characterized by multimerization. To establish the formation of Tg multimers, the partially unfolded/reduced Tg or deoxycholate-treated/ reduced Tg was subjected to protein disulfide isomerase (PDI)-mediated multimerization. Oxidized glutathione/PDI-mediated formation of multimeric Tg forms, requiring at least an equivalent molar ratio of PDI/Tg monomer, decreased with increasing concentration of reduced glutathione (GSH), suggesting the oxidizing role of PDI. Additional support was obtained when PDI alone, at a PDI/Tg molar ratio of 0.3, expressed a rapid multimerization. Independently, the exposure of partially unfolded Tg to GSH resulted in Tg multimerization, enhanced by PDI, according to thiol-disulfide exchange. Though to a lower extent, a similar result was observed with the dimerization of deoxycholate-pretreated Tg monomer. Consequently, it is implied that intermolecular disulfide linkage may be facilitated at a limited region of unfolded Tg. In an attempt to examine the multimerization site, the cysteine residue-rich fragments of the Tg were subjected to GSH-induced multimerization; a 50 kDa fragment, containing three vicinal dithiols, was multimerized, while an N-terminal domain was not. Present results suggest that the oxidase as well as isomerase function of PDI may be involved in the multimerization of partially unfolded Tg or deoxycholate-treated Tg.

Expression and Characterization of CMCax Having β-1,4-Endoglucanase Activity from Acetobacter xylinum

  • Koo, Hyun-Min;Song, Sung-Hee;Pyun, Yu-Ryang;Kim, Yu-Sam
    • BMB Reports
    • /
    • v.31 no.1
    • /
    • pp.53-57
    • /
    • 1998
  • The CMCax gene from Acetobacter xylinum ATCC 23769 was cloned and expressed in E. coli. With this gene, three gene products - mature CMCax, CMCax containing signal peptide(pre-CMCax), and a glutathione-S-transferase(GST)-CMCax fusion enzyme - were expressed. CMCax and pre-CMCax are aggregated to multimeric forms which showed high CMC hydrolysis activity, whereas GST-CMCax was less aggregated and showed lower activity, indicating that oligomerization of CMCax controbutes to the cellulose hydrolysis activity to achieve greater efficiency. The enzyme was identified to be an $\beta$-1,4-endoglucanase, which catalyzes the cleavage of internal $\beta$-1,4-glycosidic bonds of cellulose. The reaction products, cellobiose and cellotriose, from cellopentaose as a substrate, were identified by HPLC. Substrate specificity of cellotetraose by this enzyme was poor, and the reaction products consisted of glucose, cellobiose, and cellotriose in a very low yield. Theses results suggested that cellopentaose might be the oligosaccharide substrate consisting of the lowest number of glucose. The optimum pH of CMCax and pre CMCax was about 4.5, whereas that of GST-CMCas was rather broad at pH 4.5-8. The physiological significance of cellulose-hydrolyzing enzyme, CMCax, having such low $\beta$-1,4-endoglucanase activity and low optimum pH in cellulose-producing A. xylinum is not clearly known yet, but it seems to be closely related to the production of cellulose.

  • PDF

Expression and Characterization of Thiol-Specific Antioxidant Protein, DirA of Corynebacterium diphtheriae (코리네박테리움 디프테리아 티올 특이성 항산화단백 DirA의 발현 및 특성)

  • Myung-Jai Choi;Kanghwa Kim;Won-Ki Choi
    • Biomedical Science Letters
    • /
    • v.4 no.1
    • /
    • pp.1-9
    • /
    • 1998
  • A Corynebacterium diphtheriae iron-repressible gene dirA, that was homologous to TSA of Saccharomyces cerevisiae and AhpC subunit of Salmonella typhimurium alkyl hydroperoxide reductase, was amplified with PCR and expressed in E. coli. The DirA purified from the transformed E. coli crude extracts prevented the inactivation of enzyme caused by metal-catalyzed oxidation (MCO) system containing thiols but not by ascorbate/Fe$^{3+}$/$O_2$ MCO system. The DirA concentration, which inhibited the inactivation of glutamine synthetase by 50% (IC$_{50}$) against MCO system, was 0.12 mg/ml. The multimeric forms of DirA were converted to the monomeric form in SDS-PAGE under the thioredoxin system comprised of NADPH, Saccharomyces cerevisiae thioredoxin reductase, and thioredoxin. Also, DirA showed thioredoxin dependent peroxidase activity. All of these results were consistent with the characteristics of a thiol specific antioxidant (TSA) protein having two conserved cysteine residues.

  • PDF

Association of the A-G Polymorphism in Porcine Adiponectin Gene with Fat Deposition and Carcass Traits

  • Dai, L.H.;Xiong, Y.Z.;Deng, C.Y.;Jiang, S.W.;Zuo, B.;Zheng, R.;Li, F.E.;Lei, M.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.6
    • /
    • pp.779-783
    • /
    • 2006
  • The adiponectin gene is known to be involved in the regulation of energy homeostasis involving food intake, carbohydrate and lipid metabolism. Human adiponectin gene polymorphisms have been recently reported to be associated with obesity, insulin sensitivity and the risk of type 2 diabetes. The present study was carried out to investigate the porcine adiponectin gene as a candidate gene for fat deposition and carcass traits. A mutation of A178G of the porcine adiponectin gene that resulted in substitution of the amino acid Isoleucine to Valine was identified. AcyI PCR-RFLP was used to detect the polymorphism of the genotypes in five different pig populations (Large White, Landrace, Duroc, Chinese breeds Meishan and Qingping). The A allele frequency was significantly higher among subjects from Chinsese lard type breeds, while the G allele was the only one present in those from Western lean type breeds. To determine if there was an association of the polymorphism with phenotypic variation, the mutation was tested in 267 pigs of the "Large $White{\times}Meishan$" F2 resource population. The results of association analyses showed significant associations of the genotypes with fat deposition and carcass traits. Allele G was significantly associated with increase in loin eye height, loin eye area and lean meat percentage and bone percentage, and decrease in fat mean percentage, ratio of lean to fat, shoulder fat thickness, 6-7 rib fat thickness, thorax-waist fat thickness and buttock fat thickness. The substitution of A178G (Ile60Val) happened to be located at amino acid 60 in the collagenous domain of porcine adiponectin which might affect the association into higher-order structures, and accordingly affect the posttranslational modifications and optimal biological activity of the multimeric forms. The identified functional polymorphism provides new evidence of adiponectin as an important candidate gene affecting fat deposition and carcass traits in pigs.