• Title/Summary/Keyword: multilocus sequencing typing

Search Result 19, Processing Time 0.023 seconds

High Resolution Whole Genome Multilocus Sequence Typing (wgMLST) Schemes for Salmonella enterica Weltevreden Epidemiologic Investigations

  • Tadee, Pakpoom;Tadee, Phacharaporn;Hitchings, Matthew D.;Pascoe, Ben;Sheppard, Samuel K.;Patchanee, Prapas
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.2
    • /
    • pp.162-170
    • /
    • 2018
  • Non-typhoidal Salmonella is one of the main pathogens causing food-borne illness in humans, with up to 20% of cases resulting from consumption of pork products. Over the gastroenteritis signs, multidrug resistant Salmonella has arisen. In this study, pan-susceptible phenotypic strains of Salmonella enterica serotype Weltevreden recovered from pig production chain in Chiang Mai, Thailand during 2012-2014 were chosen for analysis. The aim of this study was to use whole genome sequencing (WGS) data with an emphasis on antimicrobial resistance gene investigation to assess their pathogenic potential and genetic diversity determination based on whole genome Multilocus Sequence Typing (wgMLST) to expand epidemiological knowledge and to provide additional guidance for disease control. Analyis using ResFinder 3.0 for WGS database tracing found that one of pan-susceptible phenotypic strain carried five classes of resistance genes: aminoglycoside, beta-lactam, phenicol, sulfonamide, and tetracycline associated genes. Twenty four and 36 loci differences were detected by core genome Multilocus Sequence Typing (cgMLST) and pan genome Multilocus Sequence Typing (pgMLST), respectively, in two matching strains (44/13 vs A543057 and A543056 vs 204/13) initially assigned by conventional MLST and Pulsed-field Gel Electrophoresis (PFGE). One hundread percent discriminant ability can be achieved using the wgMLST technique. WGS is currently the ultimate molecular technique for various in-depth studies. As the findings stated above, a new of "gold standard typing method era" for routine works in genome study is being set.

Molecular identification of Bacillus licheniformis isolates from Korean traditional fermented soybean by the multilocus phylogenetic analysis

  • Moon, Sung-Hyun;Hossain, Md Mukter;Oh, Yeonsu;Cho, Ho-Seong
    • Korean Journal of Veterinary Service
    • /
    • v.39 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • In this study, Bacillus licheniformis which has been used as probiotics was isolated from Korean traditional fermented soybean. A total of 69 strains were presumptively identified as B. licheniformis by phenotypic methods. Based on PCR amplification and 16S rRNA gene sequencing, the multilocus sequence typing of gyrA and rpoB, followed by phylogenetic analysis was performed. The isolates were distinctly differentiated and found to be closely related to B. amyloliquefaciens, B. subtilis, and B. aerius. The partial 16S rRNA gene sequences of those strains matched those of B. sonorensis (97%) and B. aerius (98%) in the phylogenetic tree. In contrast, multilocus phylogenetic analysis (MLPA) showed that only 61 (86.9%) out of 69 strains were B. licheniformis. The rest of those strains were found to be B. subtilis (5.8%), B. amyloliquefaciens (2.9%), and B. sonorensis (2.9%), respectively. Therefore, our results suggested that since the 16S rRNA gene sequencing alone was not sufficient to compare and discriminate closely related lineages of Bacillus spp., it was required to analyze the MLPA simultaneously to avoid any misleading phenotype-based grouping of these closely related species.

Phylogeny of Flavobacteria Group Isolated from Freshwater Using Multilocus Sequencing Analysis

  • Mun, Seyoung;Lee, Jungnam;Lee, Siwon;Han, Kyudong;Ahn, Tae-Young
    • Genomics & Informatics
    • /
    • v.11 no.4
    • /
    • pp.272-276
    • /
    • 2013
  • Sequence analysis of the 16S rRNA gene has been widely used for the classification of microorganisms. However, we have been unable to clearly identify five Flavobacterium species isolated from a freshwater by using the gene as a single marker, because the evolutionary history is incomplete and the pace of DNA substitutions is relatively rapid in the bacteria. In this study, we tried to classify Flavobacterium species through multilocus sequence analysis (MLSA), which is a practical and reliable technique for the identification or classification of bacteria. The five Flavobacterium species isolated from freshwater and 37 other strains were classified based on six housekeeping genes: gyrB, dnaK, tuf, murG, atpA, and glyA. The genes were amplified by PCR and subjected to DNA sequencing. Based on the combined DNA sequence (4,412 bp) of the six housekeeping genes, we analyzed the phylogenetic relationship among the Flavobacterium species. The results indicated that MLSA, based on the six housekeeping genes, is a trustworthy method for the identification of closely related Flavobacterium species.

Molecular typing of uropathogenic Escherichia coli isolated from Korean children with urinary tract infection

  • Yun, Ki Wook;Kim, Do Soo;Kim, Wonyong;Lim, In Seok
    • Clinical and Experimental Pediatrics
    • /
    • v.58 no.1
    • /
    • pp.20-27
    • /
    • 2015
  • Purpose: We investigated the molecular types of uropathogenic Escherichia coli (UPEC) by using conventional phylogrouping, multilocus sequence typing (MLST), and fimH genotyping. Methods: Samples of patients younger than 18 years of age were collected from the Chung-Ang University Hospital over 2 years. Conventional phylogenetic grouping for UPEC strains was performed by polymerase chain reaction (PCR). Bacterial strain sequence types (STs) were classified on the basis of the results of partial sequencing of seven housekeeping genes. In addition, we analyzed nucleotide variations in a 424-base pair fragment of fimH, a major virulence factor in UPEC. Results: Sixty-four UPEC isolates were analyzed in this study. Phylogenetic grouping revealed that group B2 was the most common type (n=54, 84%). We identified 16 distinctive STs using MLST. The most common STs were ST95 (35.9%), ST73 (15.6%), ST131 (12.5%), ST69 (7.8%), and ST14 (6.3%). Fourteen fimH allele types were identified, of which 11 had been previously reported, and the remaining three were identified in this study. f1 (n=28, 45.2%) was found to be the most common allele type, followed by f6 and f9 (n=7, 11.3% each). Comparative analysis of the results from the three different molecular typing techniques revealed that both MLST and fimH typing generated more discriminatory UPEC types than did PCR-based phylogrouping. Conclusion: We characterized UPEC molecular types isolated from Korean children by MLST and fimH genotyping. fimH genotyping might serve as a useful molecular test for large epidemiologic studies of UPEC isolates.

Molecular Identification of a Sea Anemone (Cnidaria: Anthozoa: Actiniaria) Obtained in Gijang, Busan (부산 기장에서 채집된 말미잘의 분자생물학적 방법을 이용한 동정)

  • Yoo, Sang Joon;Kim, Do-Hyung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.50 no.4
    • /
    • pp.447-452
    • /
    • 2017
  • In this study, we tried to identify a sea anemone collected from the coast of Gijang, Busan. The anemone was morphologically similar to species belonging to the genus Anthopleura, but its morphological characteristics did not allow for confirmed identification to species level. Multiple genes from mitochondrial cytochrome oxidase III, 12S and 16S rRNA, and nuclear 18S and 28S rRNA, were amplified for multilocus sequence typing (MLST) analysis using genomic DNA extracted from the sampled anemone and a different primer set. Based on the MLST analysis, the anemone obtained in this study was identified as Anthopleura artemisia. Also, the sequence of internal transcribed spacer-2 was most closely related to A. artemisia, indicating that this single region might be useful for anemone identification. This study shows significance of molecular identification for sea anemones, and will be helpful in studies of sea anemone identification using genotyping-by-sequencing.

Wolbachia Sequence Typing in Butterflies Using Pyrosequencing

  • Choi, Sungmi;Shin, Su-Kyoung;Jeong, Gilsang;Yi, Hana
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.9
    • /
    • pp.1410-1416
    • /
    • 2015
  • Wolbachia is an obligate symbiotic bacteria that is ubiquitous in arthropods, with 25-70% of insect species estimated to be infected. Wolbachia species can interact with their insect hosts in a mutualistic or parasitic manner. Sequence types (ST) of Wolbachia are determined by multilocus sequence typing (MLST) of housekeeping genes. However, there are some limitations to MLST with respect to the generation of clone libraries and the Sanger sequencing method when a host is infected with multiple STs of Wolbachia. To assess the feasibility of massive parallel sequencing, also known as next-generation sequencing, we used pyrosequencing for sequence typing of Wolbachia in butterflies. We collected three species of butterflies (Eurema hecabe, Eurema laeta, and Tongeia fischeri) common to Korea and screened them for Wolbachia STs. We found that T. fischeri was infected with a single ST of Wolbachia, ST41. In contrast, E. hecabe and E. laeta were each infected with two STs of Wolbachia, ST41 and ST40. Our results clearly demonstrate that pyrosequencing-based MLST has a higher sensitivity than cloning and Sanger sequencing methods for the detection of minor alleles. Considering the high prevalence of infection with multiple Wolbachia STs, next-generation sequencing with improved analysis would assist with scaling up approaches to Wolbachia MLST.

Epidemiological Study of KPC-2 Producing Klebsiella pneumoniae Isolated in Daejeon During a 4-Year Period (최근 4년간 대전지역에서 분리된 KPC-2 생성 Klebsiella pneumoniae의 역학적 연구)

  • Hye Hyun, Cho
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.54 no.4
    • /
    • pp.265-272
    • /
    • 2022
  • The emergence and dissemination of carbapenemase-producing Enterobacteriaceae (CPE), particularly the Klebsiella pneumoniae carbapenemase-2 (KPC-2) producing Klebsiella pneumoniae, has been rapidly increasing worldwide and is becoming a serious public health threat. Since the epidemiology and characteristics of these KPC-2-producing K. pneumoniae vary according to the region and period under consideration, this study investigated the prevalence of carbapenemases and the epidemiological relationship of 78 carbapenem-resistant K. pneumoniae (CRKP) isolated from a tertiary hospital in Daejeon, from March 2017 to December 2020. The antimicrobial susceptibility tests were identified using the disk-diffusion method. PCR and DNA sequencing were used to determine the carbapenemase genes. In addition, molecular epidemiology was performed by multilocus sequence typing (MLST). Among the 78 CRKP isolates, 35 isolates (44.9%) were carbapenemase-producing K. pneumoniae (CPKP) and the major carbapenemase type was KPC-2 (30 isolates, 85.7%). The New Delhi metallo-enzyme-1 (NDM-1) and NDM-5 were identified in 4 isolates (11.4%) and 1 isolate (2.9%), respectively. Multilocus sequence typing (MLST) analysis showed 10 sequence types (STs) and the most prevalent ST was ST307 (51.4%, 18/35). All the ST307 isolates were KPC-2-producing K. pneumoniae and were multidrug-resistant (MDR). In addition, ST307 has gradually emerged during a four-year period. These findings indicate that continuous monitoring and proper infection control are needed to prevent the spread of KPC-2-producing K. pneumoniae ST307.

Non-hemolytic, Mucinous, Coagulase Negative MRSA Isolated from Urine (소변에서 분리된 비용혈성, 점액성, 응고효소 음성 MRSA)

  • Kim, Jae Soo;Choi, Qute;Jung, Bo Kyeung;Kim, Jong Wan;Kim, Ga Yeon
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.51 no.2
    • /
    • pp.260-264
    • /
    • 2019
  • An 84-year-old woman presented to the emergency department with a chief complaint of pressure sores of the anus. She had a urine catheter when she showed pyuria three times but had no fever. A microscopic examination revealed many grapevine-like Gram positive strains and neutrophils. After 24 hours of urine culture on blood agar, non-hemolytic mucous colonies were found and further enlarged after 48 hours of culture. The capsules were identified after India ink stain. The catalase was positive, but the tube coagulase and latex coagulase were both negative. The S. aureus was identified by Vitek-2 and mass spectrometer Vitek MS V-3 IVD. The strain was confirmed by 16S rRNA gene sequencing and multilocus sequence typing (MLST). The phenotypically atypical MRSA found in the tube coagulase and latex coagulase were both negative. MRSA often show no beta hemolysis as in this case but are rarely latex coagulase-negative. We report a woman whose urine culture showed non-hemolytic, tube coagulase-negative, and latex coagulase-negative MRSA.

Colletotrichum fructicola, a Member of Colletotrichum gloeosporioides sensu lato, is the Causal Agent of Anthracnose and Soft Rot in Avocado Fruits cv. "Hass"

  • Fuentes-Aragon, Dionicio;Juarez-Vazquez, Sandra Berenice;Vargas-Hernandez, Mateo;Silva-Rojas, Hilda Victoria
    • Mycobiology
    • /
    • v.46 no.2
    • /
    • pp.92-100
    • /
    • 2018
  • The filamentous Ascomycota Colletotrichum gloeosporioides sensu lato is a fungus that has been reported worldwide as a causal agent of anthracnose disease in avocado and other crops. In Mexico, this species affects fruits from an early stage of development in the orchard until the post-harvest stage. Although fungicides are continuously applied to control Colletotrichum species, pericarp cankers and soft rot mesocarp in fruits are still frequently observed. Considering the lack of a precise description of the causative agent, the aim of the current study was to determine the pathogens involved in this symptomatology. Twenty-four isolates were consistently obtained from the pericarp of avocado fruits cv. "Hass" collected in the central avocado-producing area of Mexico. Morphological features such as colony growth, conidia size, and mycelial appressorium were assessed. Bayesian multilocus phylogenetic analyses were performed using amplified sequences of the internal transcribed spacer region of the nuclear ribosomal DNA; actin, chitin synthase, glyceraldehyde-3-phosphate dehydrogenase partial genes; and APn2-Mat1-2 intergenic spacer and mating type Mat1-2 partial gene from the nine selected isolates. In addition, fruits were inoculated with a conidial suspension and reproducible symptoms confirmed the presence of Colletotrichum fructicola in this area. This pathogenic species can now be added to those previously reported in the country, such as C. acutatum, C. boninense, C. godetiae, C. gloeosporioides, and C. karstii. Disease management programs to reduce the incidence of anthracnose should include C. fructicola to determine its response to fungicides that are routinely applied, considering that the appearance of new species is affecting the commercial quality of the fruits and shifting the original population structure.

Molecular Analysis of Carbapenem-Resistant Enterobacteriaceae at a South Korean Hospital

  • Lee, Miyoung;Choi, Tae-Jin
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.3
    • /
    • pp.389-398
    • /
    • 2020
  • The prevalence of carbapenem-resistant Enterobacteriaceae (CRE) is increasing globally, resulting in high mortality rates. Although CRE is a relatively recent problem in Korea (the first case was not diagnosed until 2010), it is responsible for serious morbidities at an alarming rate. In this study, we carried out a molecular genetic analysis to determine the incidence of CRE and carbapenemase-producing Enterobacteriaceae (CPE) at a general hospital in Korea between August 2017 and August 2019. Forty strains of CPE were isolated from various clinical specimens and analyzed via antimicrobial susceptibility testing, polymerase chain reaction to detect β-lactamase genes, deoxyribonucleic acid sequencing, multilocus sequence typing, curing testing, and conjugal transfer of plasmids. The results demonstrated that all 40 isolates were multidrug-resistant. The fluoroquinolone susceptibility test showed that 75% of the Enterobacteriaceae isolates were resistant to ciprofloxacin, whereas 72.5% were resistant to trimethoprim-sulfamethoxazole. Further, conjugation accounted for 57.5% of all resistant plasmid transfer events, which is 4.3-fold higher than that observed in 2010 by Frost et al. Finally, the high detection rate of transposon Tn4401 was associated with the rapid diffusion and evolution of CPE. Our results highlight the rapid emergence of extensively drugresistant strains in Korea and emphasize the need for employing urgent control measures and protocols at the national level.