Browse > Article
http://dx.doi.org/10.4014/mbl.2002.02009

Molecular Analysis of Carbapenem-Resistant Enterobacteriaceae at a South Korean Hospital  

Lee, Miyoung (Department of Microbiology, Pukyoung National University)
Choi, Tae-Jin (Department of Microbiology, Pukyoung National University)
Publication Information
Microbiology and Biotechnology Letters / v.48, no.3, 2020 , pp. 389-398 More about this Journal
Abstract
The prevalence of carbapenem-resistant Enterobacteriaceae (CRE) is increasing globally, resulting in high mortality rates. Although CRE is a relatively recent problem in Korea (the first case was not diagnosed until 2010), it is responsible for serious morbidities at an alarming rate. In this study, we carried out a molecular genetic analysis to determine the incidence of CRE and carbapenemase-producing Enterobacteriaceae (CPE) at a general hospital in Korea between August 2017 and August 2019. Forty strains of CPE were isolated from various clinical specimens and analyzed via antimicrobial susceptibility testing, polymerase chain reaction to detect β-lactamase genes, deoxyribonucleic acid sequencing, multilocus sequence typing, curing testing, and conjugal transfer of plasmids. The results demonstrated that all 40 isolates were multidrug-resistant. The fluoroquinolone susceptibility test showed that 75% of the Enterobacteriaceae isolates were resistant to ciprofloxacin, whereas 72.5% were resistant to trimethoprim-sulfamethoxazole. Further, conjugation accounted for 57.5% of all resistant plasmid transfer events, which is 4.3-fold higher than that observed in 2010 by Frost et al. Finally, the high detection rate of transposon Tn4401 was associated with the rapid diffusion and evolution of CPE. Our results highlight the rapid emergence of extensively drugresistant strains in Korea and emphasize the need for employing urgent control measures and protocols at the national level.
Keywords
Fluoroquinolone; blaKPC; Escherichia coli ST410; Klebsiella pneumoniae ST307; carbapenem-resistant Enterobacteriaceae; carbapenemase-producing Enterobacteriaceae;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Yamane K, Wachino J, Suzuki S, Arakawa Y. 2008. Plasmid-mediated qepA gene among Escherichia coli clinical isolates from Japan. Antimicrob. Agents Chemother. 52: 1564-1566.   DOI
2 O'Neill J. 2014. Antimicrobial resistance: Tackling a crisis for the health and wealth of nations. Review of antimicrobial resistance. Available from https://amr-review.org/sites/default/files/AMR%20Review%20Paper%20-%20Tackling%20a%20crisis%20for%20the%20health%20and%20wealth%20of%20nations_1.pdf. Accessed Nov. 20, 2019.
3 Centers for Disease Control and Prevention. 2013. Antibiotic resistance threats in the United States, 2013. Available from https://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf. Accessed Nov. 17, 2019.
4 Kim JO, Song SA, Yoon EJ, Shin JH, Lee H, Jeong SH, et al. 2017. Outbreak of KPC-2-producing Enterobacteriaceae caused by clonal dissemination of Klebsiella pneumoniae ST307 carrying an IncX3-type plasmid harboring a truncated Tn4401a. Diagn. Microbiol. Infect. Dis. 87: 343-348.   DOI
5 Jeong SH, Kim HS, Kim JS, Shin DH, Kim HS, Park MJ, et al. 2016. Prevalence and molecular characteristics of carbapenemaseproducing Enterobacteriaceae from five hospitals in Korea. Ann. Lab. Med. 36: 529-535.   DOI
6 Mouloudi E, Protonotariou E, Zagorianou A, Iosifidis E, Karapanagiotou A, Giasnetsova T, et al. 2010. Bloodstream infections caused by metallo-${\beta}$-lactamase/Klebsiella pneumoniae carbapenemase-producing K. pneumoniae among intensive care unit patients in Greece: Risk factors for infection and impact of type of resistance on outcomes. Infect. Control Hosp. Epidemiol. 31: 1250-1256.   DOI
7 Grobbel M, Lubke-Becker A, Wieler LH, Froyman R, Friederichs S, Filios S. 2007. Comparative quantification of the in vitro activity of veterinary fluoroquinolones. Vet. Microbiol. 124: 73-81.   DOI
8 Schulz J, Kemper N, Hartung J, Janusch F, Mohring SAI, Hamscher G. 2019. Analysis of fluoroquinolones in dusts from intensive livestock farming and the co-occurrence of fluoroquinolone-resistant Escherichia coli. Sci. Rep. 9: 5117.   DOI
9 Dalhoff A. 2012. Global fluoroquinolone resistance epidemiology and implications for clinical use. Interdiscip. Perspect. Infect. Dis. 2012: 976273.   DOI
10 Sarkozy G. 2001. Quinolones: a class of antimicrobial agents. Vet. Med. 46: 257-274.   DOI
11 Frye JG, Jackson CR. 2013. Genetic mechanisms of antimicrobial resistance identified in Salmonella enterica, Escherichia coli, and Enteroccocus spp. isolated from U.S. food animals. Front. Microbiol. 4: 135.   DOI
12 Hopkins KL, Davies RH, Threlfall EJ. 2005. Mechanisms of quinolone resistance in Escherichia coli and Salmonella: Recent developments. Int. J. Antimicrob. Agents 25: 358-373.   DOI
13 Lee CR, Lee JH, Park KS, Kim YB, Jeong BC, Lee SH. 2016. Global dissemination of carbapenemase-producing Klebsiella pneumoniae: Epidemiology, genetic context, treatment options, and detection methods. Front. Microbiol. 7: 895.
14 Endtz HP, Ruijs GJ, van Klingeren B, Jansen WH, van der Reyden T, Mouton RP. 1991. Quinolone resistance in campylobacter isolated from man and poultry following the introduction of fluoroquinolones in veterinary medicine. J. Antimicrob. Chemother. 27: 199-208.   DOI
15 Garcia Ovando H, Gorla N, Luders C, Poloni G, Errecalde C, Prieto G, et al. 1999. Comparative pharmacokinetics of enrofloxacin and ciprofloxacin in chickens. J. Vet. Pharmacol. Ther. 22: 209-212.   DOI
16 van den Bogaard AE, London N, Driessen C, Stobberingh EE. 2001. Antibiotic resistance of faecal Escherichia coli in poultry, poultry farmers and poultry slaughterers. J. Antimicrob. Chemother. 47: 763-771.   DOI
17 Bradford PA, Urban C, Mariano N, Projan SJ, Rahal JJ, Bush K. 1997. Imipenem resistance in Klebsiella pneumoniae is associated with the combination of ACT-1, a plasmid-mediated AmpC ${\beta}$-lactamase, and the foss of an outer membrane protein. Antimicrob. Agents Chemother. 41: 563-569.   DOI
18 Kaczmarek FM, Dib-Hajj F, Shang W, Gootz TD. 2006. High-level carbapenem resistance in a Klebsiella pneumoniae clinical isolate is due to the combination of $bla_{ACT-1}$ ${\beta}$-lactamase production, porin OmpK35/36 insertional inactivation, and down-regulation of the phosphate transport porin PhoE. Antimicrob. Agents Chemother. 50: 3396-3406.   DOI
19 Nordmann P, Dortet L, Poirel L. 2012. Carbapenem resistance in Enterobacteriaceae: here is the storm! Trends Mol. Med. 18: 263-272   DOI
20 Giani T, Pini B, Arena F, Conte V, Bracco S, Migliavacca R, et al. 2013. Epidemic diffusion of KPC carbapenemase-producing Klebsiella pneumoniae in Italy: Results of the first countrywide survey, 15 May to 30 June 2011. Euro. Surveill. 18: 20489.
21 Chen YT, Lin JC, Fung CP, Lu PL, Chuang YC, Wu TL, et al. 2014. KPC-2-encoding plasmids from Escherichia coli and Klebsiella pneumoniae in Taiwan. J. Antimicrob. Chemother. 69: 628-631.   DOI
22 Frost L, Leplae R, Summers AO, Toussaint A. 2005. Mobile genetic elements: The agents of open source evolution. Nat. Rev. Microbiol. 3: 722-732.   DOI
23 Sota M, Top E. 2008. Horizontal gene transfer mediated by plasmids, pp. 111-181. In Lipps G (ed.), Plasmids: Current Research and Future Trends. Caister Academic Press, Horizon Scientific Press, Norfolk, VA.
24 Roer L, Overballe-Petersen S, Hansen F, Schonning K, Wang M, Roder BL, et al. 2018. Escherichia coli sequence type 410 is causing new international high-risk clones. mSphere 3: e00337-18.
25 Leclercq R, Canton R, Brown DF, Giske CG, Heisig P, MacGowan AP, et al. 2013. EUCAST expert rules in antimicrobial susceptibility testing. Clin. Microbiol. Infect. 19: 141-160.   DOI
26 Sheppard AE, Stoesser N, Wilson DJ, Sebra R, Kasarskis A, Anson LW, et al. 2016. Nested Russian doll-like genetic mobility drives rapid dissemination of the carbapenem resistance gene $bla_{KPC}$. Antimicrob. Agents Chemother. 60: 3767-3778.   DOI
27 Pitout JD, Nordmann P, Poirel L. 2015. Carbapenemase-producing Klebsiella pneumoniae, a key pathogen set for global nosocomial dominance. Antimicrob. Agents Chemother. 59: 5873-5884.   DOI
28 Villa L, Feudi C, Fortini D, Brisse S, Passet V, Bonura C, et al. 2017. Diversity, virulence, and antimicrobial resistance of the KPC-producing Klebsiella pneumoniae ST307 clone. Microb. Genom. 3: e000110.   DOI
29 Geraci DM, Bonura C, Giuffre M, Saporito L, Graziano G, Aleo A, et al. 2015. Is the monoclonal spread of the ST258, KPC-3-producing clone being replaced in southern Italy by the dissemination of multiple clones of carbapenem-nonsusceptible, KPC-3-producing Klebsiella pneumoniae? Clin. Microbiol. Infect. 21: e15-e17.   DOI
30 Korea Centers for Disease Control and Prevention. Distribution of carbapenem-resistant Enterobacteriaceae (CRE) in Korea, 2017. Available from https://is.cdc.go.kr/upload_comm/syview/doc.html?fn=156811210482900.pdf&rs=/upload_comm/docu/0034/. Accessed Dec. 11, 2019.
31 Naas T, Cuzon G, Truong HV, Nordmann P. 2012. Role of ISKpn7 and deletions in $bla_{KPC}$ gene expression. Antimicrob. Agents Chemother. 56: 4753-4759.   DOI
32 Frost LS, Koraimann G. 2010. Regulation of bacterial conjugation: Balancing opportunity with adversity. Future Microbiol. 5: 1057-1071.   DOI
33 Smillie C, Garcillan-Barcia MP, Francia MV, Rocha EP, de la Cruz F. 2010. Mobility of plasmids. Microbiol. Mol. Biol. Rev. 74: 434-452.   DOI
34 Guglielmini J, Quintais L, Garcillan-Barcia MP, de la Cruz F, Rocha EP. 2011. The repertoire of ICE in prokaryotes underscores the unity, diversity, and ubiquity of conjugation. PLoS Genet. 7: e1002222.   DOI
35 Cicek AC, Duzgun AO, Saral A, Sandalli C. 2014. Determination of a novel integron-located variant ($bla_{OXA-320}$) of Class D ${\beta}$-lactamase in Proteus mirabilis. J. Basic Microbiol. 54: 1030-1035.   DOI
36 Clinical and Laboratory Standards Institute. 2018. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Wayne, Pennsylvania.
37 Jeong S, Kim JO, Jeong SH, Bae IK, Song W. 2015. Evaluation of peptide nucleic acid-mediated multiplex real-time PCR kits for rapid detection of carbapenemase genes in gram-negative clinical isolates. J. Microbiol. Methods. 113: 4-9.   DOI
38 Perez-Perez FJ, Hanson ND. 2002. Detection of plasmid-mediated AmpC ${\beta}$-lactamase genes in clinical isolates by using multiplex PCR. J. Clin. Microbiol. 40: 2153-2162.   DOI
39 Landman D, Bratu S, Quale J. 2009. Contribution of OmpK36 to carbapenem susceptibility in KPC-producing Klebsiella pneumoniae. J. Med. Microbiol. 58: 1303-1308.   DOI
40 Ryoo NH, Kim EC, Hong SG, Park YJ, Lee K, Bae IK, et al. 2005. Dissemination of SHV-12 and CTX-M-type extended-spectrum ${\beta}$- lactamases among clinical isolates of Escherichia coli and Klebsiella pneumoniae and emergence of GES-3 in Korea. J. Antimicrob. Chemother. 56: 698-702.   DOI
41 Yoon E-J, Kim JO, Kim D, Lee H, Yang JW, Lee KJ, et al. 2018. Klebsiella pneumonia carbapenemase producers in South Korea between 2013 and 2015. Front. Microbiol. 9: 56.   DOI
42 Wirth T, Falush D, Lan R, Colles F, Mensa P, Wieler LH, et al. 2006. Sex and virulence in Escherichia coli: an evolutionary perspective. Mol. Microbiol. 60: 1136-1151.   DOI
43 Diancourt L, Passet V, Verhoef J, Grimont PA, Brisse S. 2005. Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. J. Clin. Microbiol. 43: 4178-4182.   DOI
44 Jeong SH, Lee KM, Lee J, Bae IK, Kim JS, Kim HS, et al. 2015. Clonal and horizontal spread of the blaOXA-232 gene among Enterobacteriaceae in a Korean hospital. Diagn. Microbiol. Infect. Dis. 82: 70-72.   DOI
45 Leavitt A, Chmelnitsky I, Ofek I, Carmeli Y, Navon-Venezia S. 2010. Plasmid pKpQIL encoding KPC-3 and TEM-1 confers carbapenem resistance in an extremely drug-resistant epidemic Klebsiella pneumoniae strain. J. Antimicrob. Chemother. 65: 243-248.   DOI
46 Tsai YK, Fung CP, Lin JC, Chen JH, Chang FY, Chen TL, et al. 2011. Klebsiella pneumoniae outer membrane porins OmpK35 and OmpK36 play roles in both antimicrobial resistance and virulence. Antimicrob. Agents Chemother. 55: 1485-1493.   DOI
47 Kim SY, Shin J, Shin SY, Ko KS. 2013. Characteristics of carbapenem-resistant Enterobacteriaceae isolates from Korea. Diagn. Microbiol. Infect. Dis. 76: 486-490.   DOI