DOI QR코드

DOI QR Code

Molecular Analysis of Carbapenem-Resistant Enterobacteriaceae at a South Korean Hospital

  • Lee, Miyoung (Department of Microbiology, Pukyoung National University) ;
  • Choi, Tae-Jin (Department of Microbiology, Pukyoung National University)
  • Received : 2020.02.17
  • Accepted : 2020.05.06
  • Published : 2020.09.28

Abstract

The prevalence of carbapenem-resistant Enterobacteriaceae (CRE) is increasing globally, resulting in high mortality rates. Although CRE is a relatively recent problem in Korea (the first case was not diagnosed until 2010), it is responsible for serious morbidities at an alarming rate. In this study, we carried out a molecular genetic analysis to determine the incidence of CRE and carbapenemase-producing Enterobacteriaceae (CPE) at a general hospital in Korea between August 2017 and August 2019. Forty strains of CPE were isolated from various clinical specimens and analyzed via antimicrobial susceptibility testing, polymerase chain reaction to detect β-lactamase genes, deoxyribonucleic acid sequencing, multilocus sequence typing, curing testing, and conjugal transfer of plasmids. The results demonstrated that all 40 isolates were multidrug-resistant. The fluoroquinolone susceptibility test showed that 75% of the Enterobacteriaceae isolates were resistant to ciprofloxacin, whereas 72.5% were resistant to trimethoprim-sulfamethoxazole. Further, conjugation accounted for 57.5% of all resistant plasmid transfer events, which is 4.3-fold higher than that observed in 2010 by Frost et al. Finally, the high detection rate of transposon Tn4401 was associated with the rapid diffusion and evolution of CPE. Our results highlight the rapid emergence of extensively drugresistant strains in Korea and emphasize the need for employing urgent control measures and protocols at the national level.

Keywords

References

  1. O'Neill J. 2014. Antimicrobial resistance: Tackling a crisis for the health and wealth of nations. Review of antimicrobial resistance. Available from https://amr-review.org/sites/default/files/AMR%20Review%20Paper%20-%20Tackling%20a%20crisis%20for%20the%20health%20and%20wealth%20of%20nations_1.pdf. Accessed Nov. 20, 2019.
  2. Centers for Disease Control and Prevention. 2013. Antibiotic resistance threats in the United States, 2013. Available from https://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf. Accessed Nov. 17, 2019.
  3. Kim JO, Song SA, Yoon EJ, Shin JH, Lee H, Jeong SH, et al. 2017. Outbreak of KPC-2-producing Enterobacteriaceae caused by clonal dissemination of Klebsiella pneumoniae ST307 carrying an IncX3-type plasmid harboring a truncated Tn4401a. Diagn. Microbiol. Infect. Dis. 87: 343-348. https://doi.org/10.1016/j.diagmicrobio.2016.12.012
  4. Jeong SH, Kim HS, Kim JS, Shin DH, Kim HS, Park MJ, et al. 2016. Prevalence and molecular characteristics of carbapenemaseproducing Enterobacteriaceae from five hospitals in Korea. Ann. Lab. Med. 36: 529-535. https://doi.org/10.3343/alm.2016.36.6.529
  5. Mouloudi E, Protonotariou E, Zagorianou A, Iosifidis E, Karapanagiotou A, Giasnetsova T, et al. 2010. Bloodstream infections caused by metallo-${\beta}$-lactamase/Klebsiella pneumoniae carbapenemase-producing K. pneumoniae among intensive care unit patients in Greece: Risk factors for infection and impact of type of resistance on outcomes. Infect. Control Hosp. Epidemiol. 31: 1250-1256. https://doi.org/10.1086/657135
  6. Bradford PA, Urban C, Mariano N, Projan SJ, Rahal JJ, Bush K. 1997. Imipenem resistance in Klebsiella pneumoniae is associated with the combination of ACT-1, a plasmid-mediated AmpC ${\beta}$-lactamase, and the foss of an outer membrane protein. Antimicrob. Agents Chemother. 41: 563-569. https://doi.org/10.1128/AAC.41.3.563
  7. Kaczmarek FM, Dib-Hajj F, Shang W, Gootz TD. 2006. High-level carbapenem resistance in a Klebsiella pneumoniae clinical isolate is due to the combination of $bla_{ACT-1}$ ${\beta}$-lactamase production, porin OmpK35/36 insertional inactivation, and down-regulation of the phosphate transport porin PhoE. Antimicrob. Agents Chemother. 50: 3396-3406. https://doi.org/10.1128/AAC.00285-06
  8. Nordmann P, Dortet L, Poirel L. 2012. Carbapenem resistance in Enterobacteriaceae: here is the storm! Trends Mol. Med. 18: 263-272 https://doi.org/10.1016/j.molmed.2012.03.003
  9. Giani T, Pini B, Arena F, Conte V, Bracco S, Migliavacca R, et al. 2013. Epidemic diffusion of KPC carbapenemase-producing Klebsiella pneumoniae in Italy: Results of the first countrywide survey, 15 May to 30 June 2011. Euro. Surveill. 18: 20489.
  10. Lee CR, Lee JH, Park KS, Kim YB, Jeong BC, Lee SH. 2016. Global dissemination of carbapenemase-producing Klebsiella pneumoniae: Epidemiology, genetic context, treatment options, and detection methods. Front. Microbiol. 7: 895.
  11. Chen YT, Lin JC, Fung CP, Lu PL, Chuang YC, Wu TL, et al. 2014. KPC-2-encoding plasmids from Escherichia coli and Klebsiella pneumoniae in Taiwan. J. Antimicrob. Chemother. 69: 628-631. https://doi.org/10.1093/jac/dkt409
  12. Frost L, Leplae R, Summers AO, Toussaint A. 2005. Mobile genetic elements: The agents of open source evolution. Nat. Rev. Microbiol. 3: 722-732. https://doi.org/10.1038/nrmicro1235
  13. Sota M, Top E. 2008. Horizontal gene transfer mediated by plasmids, pp. 111-181. In Lipps G (ed.), Plasmids: Current Research and Future Trends. Caister Academic Press, Horizon Scientific Press, Norfolk, VA.
  14. Frost LS, Koraimann G. 2010. Regulation of bacterial conjugation: Balancing opportunity with adversity. Future Microbiol. 5: 1057-1071. https://doi.org/10.2217/fmb.10.70
  15. Smillie C, Garcillan-Barcia MP, Francia MV, Rocha EP, de la Cruz F. 2010. Mobility of plasmids. Microbiol. Mol. Biol. Rev. 74: 434-452. https://doi.org/10.1128/MMBR.00020-10
  16. Guglielmini J, Quintais L, Garcillan-Barcia MP, de la Cruz F, Rocha EP. 2011. The repertoire of ICE in prokaryotes underscores the unity, diversity, and ubiquity of conjugation. PLoS Genet. 7: e1002222. https://doi.org/10.1371/journal.pgen.1002222
  17. Naas T, Cuzon G, Truong HV, Nordmann P. 2012. Role of ISKpn7 and deletions in $bla_{KPC}$ gene expression. Antimicrob. Agents Chemother. 56: 4753-4759. https://doi.org/10.1128/AAC.00334-12
  18. Cicek AC, Duzgun AO, Saral A, Sandalli C. 2014. Determination of a novel integron-located variant ($bla_{OXA-320}$) of Class D ${\beta}$-lactamase in Proteus mirabilis. J. Basic Microbiol. 54: 1030-1035. https://doi.org/10.1002/jobm.201300264
  19. Clinical and Laboratory Standards Institute. 2018. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Wayne, Pennsylvania.
  20. Jeong S, Kim JO, Jeong SH, Bae IK, Song W. 2015. Evaluation of peptide nucleic acid-mediated multiplex real-time PCR kits for rapid detection of carbapenemase genes in gram-negative clinical isolates. J. Microbiol. Methods. 113: 4-9. https://doi.org/10.1016/j.mimet.2015.03.019
  21. Perez-Perez FJ, Hanson ND. 2002. Detection of plasmid-mediated AmpC ${\beta}$-lactamase genes in clinical isolates by using multiplex PCR. J. Clin. Microbiol. 40: 2153-2162. https://doi.org/10.1128/JCM.40.6.2153-2162.2002
  22. Ryoo NH, Kim EC, Hong SG, Park YJ, Lee K, Bae IK, et al. 2005. Dissemination of SHV-12 and CTX-M-type extended-spectrum ${\beta}$- lactamases among clinical isolates of Escherichia coli and Klebsiella pneumoniae and emergence of GES-3 in Korea. J. Antimicrob. Chemother. 56: 698-702. https://doi.org/10.1093/jac/dki324
  23. Yamane K, Wachino J, Suzuki S, Arakawa Y. 2008. Plasmid-mediated qepA gene among Escherichia coli clinical isolates from Japan. Antimicrob. Agents Chemother. 52: 1564-1566. https://doi.org/10.1128/AAC.01137-07
  24. Landman D, Bratu S, Quale J. 2009. Contribution of OmpK36 to carbapenem susceptibility in KPC-producing Klebsiella pneumoniae. J. Med. Microbiol. 58: 1303-1308. https://doi.org/10.1099/jmm.0.012575-0
  25. Yoon E-J, Kim JO, Kim D, Lee H, Yang JW, Lee KJ, et al. 2018. Klebsiella pneumonia carbapenemase producers in South Korea between 2013 and 2015. Front. Microbiol. 9: 56. https://doi.org/10.3389/fmicb.2018.00056
  26. Wirth T, Falush D, Lan R, Colles F, Mensa P, Wieler LH, et al. 2006. Sex and virulence in Escherichia coli: an evolutionary perspective. Mol. Microbiol. 60: 1136-1151. https://doi.org/10.1111/j.1365-2958.2006.05172.x
  27. Diancourt L, Passet V, Verhoef J, Grimont PA, Brisse S. 2005. Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. J. Clin. Microbiol. 43: 4178-4182. https://doi.org/10.1128/JCM.43.8.4178-4182.2005
  28. Jeong SH, Lee KM, Lee J, Bae IK, Kim JS, Kim HS, et al. 2015. Clonal and horizontal spread of the blaOXA-232 gene among Enterobacteriaceae in a Korean hospital. Diagn. Microbiol. Infect. Dis. 82: 70-72. https://doi.org/10.1016/j.diagmicrobio.2015.02.001
  29. Leavitt A, Chmelnitsky I, Ofek I, Carmeli Y, Navon-Venezia S. 2010. Plasmid pKpQIL encoding KPC-3 and TEM-1 confers carbapenem resistance in an extremely drug-resistant epidemic Klebsiella pneumoniae strain. J. Antimicrob. Chemother. 65: 243-248. https://doi.org/10.1093/jac/dkp417
  30. Tsai YK, Fung CP, Lin JC, Chen JH, Chang FY, Chen TL, et al. 2011. Klebsiella pneumoniae outer membrane porins OmpK35 and OmpK36 play roles in both antimicrobial resistance and virulence. Antimicrob. Agents Chemother. 55: 1485-1493. https://doi.org/10.1128/AAC.01275-10
  31. Kim SY, Shin J, Shin SY, Ko KS. 2013. Characteristics of carbapenem-resistant Enterobacteriaceae isolates from Korea. Diagn. Microbiol. Infect. Dis. 76: 486-490. https://doi.org/10.1016/j.diagmicrobio.2013.04.006
  32. Schulz J, Kemper N, Hartung J, Janusch F, Mohring SAI, Hamscher G. 2019. Analysis of fluoroquinolones in dusts from intensive livestock farming and the co-occurrence of fluoroquinolone-resistant Escherichia coli. Sci. Rep. 9: 5117. https://doi.org/10.1038/s41598-019-41528-z
  33. Dalhoff A. 2012. Global fluoroquinolone resistance epidemiology and implications for clinical use. Interdiscip. Perspect. Infect. Dis. 2012: 976273. https://doi.org/10.1155/2012/976273
  34. Sarkozy G. 2001. Quinolones: a class of antimicrobial agents. Vet. Med. 46: 257-274. https://doi.org/10.17221/7883-VETMED
  35. Grobbel M, Lubke-Becker A, Wieler LH, Froyman R, Friederichs S, Filios S. 2007. Comparative quantification of the in vitro activity of veterinary fluoroquinolones. Vet. Microbiol. 124: 73-81. https://doi.org/10.1016/j.vetmic.2007.03.017
  36. Frye JG, Jackson CR. 2013. Genetic mechanisms of antimicrobial resistance identified in Salmonella enterica, Escherichia coli, and Enteroccocus spp. isolated from U.S. food animals. Front. Microbiol. 4: 135. https://doi.org/10.3389/fmicb.2013.00135
  37. Hopkins KL, Davies RH, Threlfall EJ. 2005. Mechanisms of quinolone resistance in Escherichia coli and Salmonella: Recent developments. Int. J. Antimicrob. Agents 25: 358-373. https://doi.org/10.1016/j.ijantimicag.2005.02.006
  38. Endtz HP, Ruijs GJ, van Klingeren B, Jansen WH, van der Reyden T, Mouton RP. 1991. Quinolone resistance in campylobacter isolated from man and poultry following the introduction of fluoroquinolones in veterinary medicine. J. Antimicrob. Chemother. 27: 199-208. https://doi.org/10.1093/jac/27.2.199
  39. Garcia Ovando H, Gorla N, Luders C, Poloni G, Errecalde C, Prieto G, et al. 1999. Comparative pharmacokinetics of enrofloxacin and ciprofloxacin in chickens. J. Vet. Pharmacol. Ther. 22: 209-212. https://doi.org/10.1046/j.1365-2885.1999.00211.x
  40. van den Bogaard AE, London N, Driessen C, Stobberingh EE. 2001. Antibiotic resistance of faecal Escherichia coli in poultry, poultry farmers and poultry slaughterers. J. Antimicrob. Chemother. 47: 763-771. https://doi.org/10.1093/jac/47.6.763
  41. Leclercq R, Canton R, Brown DF, Giske CG, Heisig P, MacGowan AP, et al. 2013. EUCAST expert rules in antimicrobial susceptibility testing. Clin. Microbiol. Infect. 19: 141-160. https://doi.org/10.1111/j.1469-0691.2011.03703.x
  42. Sheppard AE, Stoesser N, Wilson DJ, Sebra R, Kasarskis A, Anson LW, et al. 2016. Nested Russian doll-like genetic mobility drives rapid dissemination of the carbapenem resistance gene $bla_{KPC}$. Antimicrob. Agents Chemother. 60: 3767-3778. https://doi.org/10.1128/AAC.00464-16
  43. Pitout JD, Nordmann P, Poirel L. 2015. Carbapenemase-producing Klebsiella pneumoniae, a key pathogen set for global nosocomial dominance. Antimicrob. Agents Chemother. 59: 5873-5884. https://doi.org/10.1128/AAC.01019-15
  44. Villa L, Feudi C, Fortini D, Brisse S, Passet V, Bonura C, et al. 2017. Diversity, virulence, and antimicrobial resistance of the KPC-producing Klebsiella pneumoniae ST307 clone. Microb. Genom. 3: e000110. https://doi.org/10.1099/mgen.0.000110
  45. Geraci DM, Bonura C, Giuffre M, Saporito L, Graziano G, Aleo A, et al. 2015. Is the monoclonal spread of the ST258, KPC-3-producing clone being replaced in southern Italy by the dissemination of multiple clones of carbapenem-nonsusceptible, KPC-3-producing Klebsiella pneumoniae? Clin. Microbiol. Infect. 21: e15-e17. https://doi.org/10.1016/j.cmi.2014.08.022
  46. Roer L, Overballe-Petersen S, Hansen F, Schonning K, Wang M, Roder BL, et al. 2018. Escherichia coli sequence type 410 is causing new international high-risk clones. mSphere 3: e00337-18.
  47. Korea Centers for Disease Control and Prevention. Distribution of carbapenem-resistant Enterobacteriaceae (CRE) in Korea, 2017. Available from https://is.cdc.go.kr/upload_comm/syview/doc.html?fn=156811210482900.pdf&rs=/upload_comm/docu/0034/. Accessed Dec. 11, 2019.