• 제목/요약/키워드: multilayered structure

검색결과 171건 처리시간 0.033초

고주파 마그네트론 스퍼터링에 의해 형성된 Co/Pd 인공초격자의 수직자기이방성에 관한 연구 (A Study on the Perpendicular Magnetic Anisotropy in Co/Pd artificial Superlattices Prepared by RF Magnetron Sputtering)

  • 박주욱;주승기
    • 한국자기학회지
    • /
    • 제2권3호
    • /
    • pp.251-256
    • /
    • 1992
  • 고주파 마그네트론 스퍼터링에 의해 Co /Pd 인공초격자를 형성하였다. 형성시킨 Co /Pd 인공초격자의 조성변조를 소각 X-선회절 분석으로 확인하였으며, XRD 분석 결과 두 원소의 격자상수 차이로 인해 Co 격자 팽창이 일어남을 알 수 있었다. Co 층 두께가 8${\AA}$ 이하가 되면 Co /Pd 인공초격자는 수직자기이방성을 띠었으며, 특히 Co가 단원자층인 경우에는 보자력이 2350 Oe이었고, 자기이력곡선의 각형도 우수하였다. Co /Pd 인공초격자가 수직자기이방성을 가지는 원인은 Pd에 의해 Co 격자가 팽창되는 현상과 관계가 있으며, Pd 두께가 증가할수록 수직자기이방성이 커지는 것을 확인하였다. Co /Pd 인공초격자의 수직자기이방성 에너지와 Co 두께의 관계로부터 계면이방성 에너지와 부피이방성 에너지를 계산하였으며 이는 각각 0.29 ergs/$cm^2$와 -$6.9{\times}10^6$ ergs/$cm^3$이었다.

  • PDF

Snapshot of carrier dynamics from amorphous phase to crystal phase in Sb2Te3 thin film

  • Choi, Hyejin;Jung, Seonghoon;Ahn, Min;Yang, Won Jun;Han, Jeong Hwa;Jung, Hoon;Jeong, Kwangho;Park, Jaehun;Cho, Mann-Ho
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.139.2-139.2
    • /
    • 2016
  • Electrons and phonons in chalcogenide-based materials play are important factors in the performance of an optical data storage media and thermoelectric devices. However, the fundamental kinetics of carriers in chalcogenide materials remains controversial, and active debate continues over the mechanism responsible for carrier relaxation. In this study, we investigated ultrafast carrier dynamics in an multilayered $\{Sb(3{\AA})/Te(9{\AA})\}n$ thin film during the transition from the amorphous to the crystalline phase using optical pump terahertz probe spectroscopy (OPTP), which permits the relationship between structural phase transition and optical property transitions to be examined. Using THz-TDS, we demonstrated that optical conductance and carrier concentration change as a function of annealing temperature with a contact-free optical technique. Moreover, we observed that the topological surface state (TSS) affects the degree of enhancement of carrier lifetime, which is closely related to the degree of spin-orbit coupling (SOC). The combination of an optical technique and a proposed carrier relaxation mechanism provides a powerful tool for monitoring TSS and SOC. Consequently, the response of the amorphous phase is dominated by an electron-phonon coupling effect, while that of the crystalline structure is controlled by a Dirac surface state and SOC effects. These results are important for understanding the fundamental physics of phase change materials and for optimizing and designing materials with better performance in optoelectronic devices.

  • PDF

블록체인을 이용하여 다층 네트워크를 확장한 확률 기반의 IoT 관리 모델 (Probability-based IoT management model using blockchain to expand multilayered networks)

  • 정윤수
    • 한국융합학회논문지
    • /
    • 제11권4호
    • /
    • pp.33-39
    • /
    • 2020
  • 최근 LTE보다 빠른 속도와 안정을 가진 5G 기술에 대한 기대감이 증가하고 있는 가운데 5G 통신 보안에 대한 관심이 증가하고 있다. 그러나, 5G는 현재까지 이질적인 영역이 서로 포함되어 있어서 보안 영역에 대한 문제들을 아직 완벽하게 지원하고 있지 않다. 본 논문은 5G 환경에서 IoT 장치의 인증을 블록체인에 적용한 확률 기반의 IoT 관리모델을 제안한다. 제안 모델은 IoT 장치의 인증을 확률적 이론과 물리적 구조를 효율적으로 융합하기 위해서 n 계층의 IoT 사용자를 n+1 계층과 n-1 계층의 관리자가 쌍방향 인증이 이루어지도록 2개의 랜덤키를 역으로 사용한다. 제안 모델은 5G 환경의 IoT 사용자에 대한 인증을 확률적 기반으로 IoT 정보를 계층화시킨 후 IoT 정보를 가중치에 적용하여 그룹핑된 IoT 정보를 블록체인으로 연결한다. 또한, 제안 모델은 5G 네트워크를 계층화된 다층 네트워크로 분할하기 때문에 기존 블록체인보다 향상된 기능을 가진다.

로보 디스펜싱을 이용하여 직접묘화방식으로 제조된 고출력 소형 고체산화물 연료전지 (Direct-Write Fabrication of Solid Oxide Fuel Cell by Robo-Dispensing)

  • 김용범;문주호;김주선;이종호;이해원
    • 한국세라믹학회지
    • /
    • 제42권6호
    • /
    • pp.425-431
    • /
    • 2005
  • Line Shaped Solid Oxide Fuel Cell (SOFC) with multilayered structure has been fabricated via direct-writing process. The cell is electrolyte of Ni-YSZ cermet anode, YSZ electrolyte and LSM cathode. They were processed into pastes for the direct writing process. Syringe filled with each electrode and electrolyte paste was loaded into the computer-controlled robe-dispensing machine and the paste was dispensed through cylindrical nozzle of 0.21 mm in diameter under the air pressure of 0.1 tow onto a moving plate with 1.22 mm/s. First of all, the anode paste was dispensed on the PSZ porous substrate, and then the electrolyte paste was dispensed. The anode/electrolyte and the PSZ substrate were co-fired at $1350^{\circ}C$ in air atmosphere for 3 h. The cathode layer was similarly dispensed and sintered at $1200^{\circ}C$ for 1 h. All the electrode/electrolyte lines were visually aligned during the direct writing process. The effective reaction area of fabricated SOFC was $0.03 cm^2$, and the thickness of anode, electrolyte and cathode was 20 $\mu$m, 15 $\mu$m, and 10 $\mu$m, respectively. The single line-shaped SOFC fabricated by direct-writing process exhibited OCV of 0.95 V and maximum power density of $0.35W/cm^2$ at $810^{\circ}C$.

다층 기판위의 대칭 및 비대칭의 다중 결합선로에 대한 해석 (Analysis of Symmetric and Asymmetric Multiple Coupled Line on the Multi-layer Substrate)

  • 김윤석;김민수
    • 전자공학회논문지
    • /
    • 제50권3호
    • /
    • pp.16-22
    • /
    • 2013
  • n 개의 균일한 결합선로를 해석하기 위하여 2n-port 어드미턴스 매트릭스의 추출에 기초한 일반적인 특성화 절차가 제시된다. 본 논문에서는 비대칭 다중 결합선로를 해석하기 위하여 시간영역의 유한차분법을 사용하여 정규화 모드 파라미터 접근법의 적용을 제안한다. 주파수 의존적인 정규화 모드 파라미터는 2n-port 어드미턴스 매트릭스로부터 얻어지고, 이로부터 주파수 의존적인 전파상수와 유효 유전율 및 결합선로의 특성임피던스를 계산할 수 있다. 이 기법을 설명하기 위해 몇몇의 실질적인 다중 유전체상의 결합선로 구조들이 모의 실험되었으며, 특히 전도체가 유전체 사이에 내재된 형태의 선로가 해석되었다. 시간영역 유한 차분법을 활용한 결과는 Spectral Domain Method의 모의실험 결과와 비교하였고, 잘 일치함을 보였다. 시간영역의 특성화 절차에 기인한 유한차분법은 얇거나 두꺼운 혼성 구조 뿐 아니라 다층 PCB상의 다중의 전도체 결합 선로 설계를 위한 훌륭한 광대역 모의실험 도구가 됨을 볼 수 있다.

다층구조계내 터널 거동의 역해석 (A Back-Analysis of Tunnels in Multi-Layered Underground Structures)

  • 전병승;이상도;나경웅;김문겸
    • 터널과지하공간
    • /
    • 제4권1호
    • /
    • pp.17-23
    • /
    • 1994
  • This study consists of two procedures on back analysis and forward analysis which is a basic tool of the former. For a safe and economical construction of underground structures, it is required to identify the structural parameters and analyze the structural behavior as exactly as possible. In this paper, a boundary element method to analyze the behavior of multi-alyered underground structures is studied, in which body forces and initial stresses are considered. That is, each layer is discritized into subregions using infinite fundamental solutions, and terms of body forces and initial stresses are transformed into boundary integral where the applied direct integral method is used. And the system of equations containing body forces and initial stresses are considered. That is, each layer is discritized into subregions using infinite fundamental solutions, and terms of body forces and initial stresses are transformed into boundary integral where the applied direct integral method is used. And the system of equations containing body forces and initial stresses are composed, then the method to solve unknowns is used with applying compatibility and equilibrium conditions between interfaces. As well, the direct search method is applied in back analysis problems. By Powell's method as a technique to search unknown parameters, assuming displacements calculated from boundary element analysis as in-situ displacements, elastic moduli and initial stresses are presumed. As consequences of this study, the results of boundary element analysis of the behavior of multilayered structure considering body forces and initial stresses are agreed with those of finite element analysis. And results of back analysis of elastic moduli and initial stresses in each layers are agreed with exact values with a little difference. Therefore, it is known that this study can be efficiently applied for analyzing the behavior of underground structures including back analysis problems.

  • PDF

열간압연 클래드강의 맞대기용접부 내식성 및 용접성 평가 (Evaluation of Corrosion Resistance and Weldability for the Butt Welding Zone of Hot Rolled Clad Steel Plates)

  • 박재원;이철구
    • Journal of Welding and Joining
    • /
    • 제31권5호
    • /
    • pp.47-53
    • /
    • 2013
  • We have investigated the traits of clad metals in hot-rolled clad steel plates, including the sensitization and mechanical properties of STS 316 steel plate and carbon steel (A516), under various specific circumstances regarding post heat treatment, multilayered welds, and thick or repeated welds for repair. For evaluations, sectioned weldments and external surfaces were investigated to reveal the degree of sensitization by micro vickers hardness, tensile, and etching tests the results were compared with those of EPR tests. The clad steel plates were butt-welded using FCAW and SAW with the time of heat treatment as the variable, a that was conducted at $625^{\circ}C$, for 80, 160, 320, 640, and 1280 min. Then, the change in corrosion resistance was evaluated in these specimens. With carbon steel (A516), as the heat treatment time increased, the annealing effect caused the tensile strength to decrease. The micro-hardness gradually increased and decreased after 640 min. The elongation and contraction of the area also increased gradually. The oxalic acid etch test and EPR test on STS316 and the clad metal showed STEP structure and no sensitization. From the test results on multi-layered and repair welds, it could be concluded that there is no effect on the corrosion resistance of clad metals. The purpose of this study was to suggest some considerations for developing on-site techniques to evaluate the sensitization of stainless steels.

Effects of Oxygen Partial Pressure on Oxidation Behavior of CMnSi TRIP Steel in an Oxidation-Reduction Scheme

  • Kim, Seong-Hwan;Huh, Joo-Youl;Kim, Myung-Soo;Kim, Jong-Sang
    • Corrosion Science and Technology
    • /
    • 제16권1호
    • /
    • pp.15-22
    • /
    • 2017
  • An oxidation-reduction scheme is an alternative approach for improving the galvanizability of advanced high-strength steel in the continuous hot-dip galvanizing process. Here, we investigated the effect of oxygen partial pressure ($P_{O_2}$) on the oxidation behavior of a transformation-induced plasticity steel containing 1.5 wt% Si and 1.6 wt% Mn during heating to and holding for 60 s at $700^{\circ}C$ under atmospheres with various $P_{O_2}$ values. Irrespective of $P_{O_2}$, a thin amorphous Si-rich layer of Si-Mn-O was formed underneath the Fe oxide scale (a $Fe_2O_3/Fe_3O_4$ bilayer) in the heating stage. In contrast to Si, Mn tended to segregate at the scale surface as $(Fe,Mn)_2O_3$. The multilayered structure of $(Fe,Mn)_2O_3/Fe_2O_3/Fe_3O_4$/amorphous Si-Mn-O remained even after extended oxidizing at $700^{\circ}C$ for 60 s. $Fe_2O_3$ was the dominantly growing oxide phase in the scale. The enhanced growth rate of $Fe_2O_3$ with increasing $P_{O_2}$ resulted in the formation of more Kirkendall voids in the amorphous Si-rich layer and a less Mn segregation at the scale surface. The mechanisms underlying the absence of FeO and the formation of Kirkendall voids are discussed.

Shape anisotropy and magnetic properties of Co/Ni anti-dot arrays

  • Deshpande, N.G.;Seo, M.S.;Kim, J.M.;Lee, S.J.;Lee, Y.P.;Rhee, J.Y.;Kim, K.W.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.444-444
    • /
    • 2011
  • Recently, patterned magnetic films and elements attract a wide interest due to their technological potentials in ultrahigh-density magnetic recording and spintronic devices. Among those patterned magnetic structures, magnetic anti-dot patterning induces a strong shape anisotropy in the film, which can control the magnetic properties such as coercivity, permeability, magnetization reversal process, and magneto-resistance. While majority of the previous works have been concentrated on anti-dot arrays with a single magnetic layer, there has been little work on multilayered anti-dot arrays. In this work, we report on study of the magnetic properties of bilayered anti-dot system consisting of upper perforated Co layer of 40 nm and lower continuous Ni layer of 5 nm thick, fabricated by photolithography and wet-etching processes. The magnetic hysteresis (M-H) loops were measured with a superconducting-quantum-interference-device (SQUID) magnetometer (Quantum Design: MPMS). For comparison, investigations on continuous Co thin film and single-layer Co anti-dot arrays were also performed. The magnetic-domain configuration has been measured by using a magnetic force microscope (PSIA: XE-100) equipped with magnetic tips (Nanosensors). An external electromagnet was employed while obtaining the MFM images. The MFM images revealed well-defined periodic domain networks which arise owing to the anisotropies such as magnetic uniaxial anisotropy, configurational anisotropy, etc. The inclusion of holes in a uniform magnetic film and the insertion of a uniform thin Ni layer, drastically affected the coercivity as compared with single Co anti-dot array, without severely affecting the saturation magnetization ($M_s$). The observed changes in the magnetic properties are closely related to the patterning that hinders the domain-wall motion as well as to the magneto-anisotropic bilayer structure.

  • PDF

ALD-assisted Hybrid Processes for improved Corrosion Resistance of Hard coatings

  • Wan, Zhixin;Kwon, Se-Hun
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2016년도 추계학술대회 논문집
    • /
    • pp.105-105
    • /
    • 2016
  • Recently, high power impulse magnetron sputtering (HIPIMS) has attracted considerable attentions due to its high potential for industrial applications. By pulsing the sputtering target with high power density and short duration pulses, a high plasma density and high ionization of the sputtered species can be obtained. HIPIMS has exhibited several merits such as increased coating density, good adhesion, microparticle-free and smooth surface, which make the HIPIMS technique desirable for synthesizing hard coatings. However, hard coatings present intrinsic defects (columnar structures, pinholes, pores, discontinuities) which can affect the corrosion behavior, especially when substrates are active alloys like steel or in a wear-corrosion process. Atomic layer deposition (ALD), a CVD derived method with a broad spectrum of applications, has shown great potential for corrosion protection of high-precision metallic parts or systems. In ALD deposition, the growth proceeds through cyclic repetition of self-limiting surface reactions, which leads to the thin films possess high quality, low defect density, uniformity, low-temperature processing and exquisite thickness control. These merits make ALD an ideal candidate for the fabrication of excellent oxide barrier layer which can block the pinhole and other defects left in the coating structure to improve the corrosion protection of hard coatings. In this work, CrN/Al2O3/CrN multilayered coatings were synthesized by a hybrid process of HIPIMS and ALD techniques, aiming to improve the CrN hard coating properties. The influence of the Al2O3 interlayer addition, the thickness and intercalation position of the Al2O3 layer in the coatings on the microstructure, surface roughness, mechanical properties and corrosion behaviors were investigated. The results indicated that the dense Al2O3 interlayer addition by ALD lead to a significant decrease of the average grain size and surface roughness and greatly improved the mechanical properties and corrosion resistance of the CrN coatings. The thickness increase of the Al2O3 layer and intercalation position change to near the coating surface resulted in improved mechanical properties and corrosion resistance. The mechanism can be explained by that the dense Al2O3 interlayer acted as an excellent barrier for dislocation motion and diffusion of the corrosive substance.

  • PDF