• Title/Summary/Keyword: multilayer perceptron (MLP)

Search Result 135, Processing Time 0.025 seconds

A Method on the Improvement of Speaker Enrolling Speed for a Multilayer Perceptron Based Speaker Verification System through Reducing Learning Data (다층신경망 기반 화자증명 시스템에서 학습 데이터 감축을 통한 화자등록속도 향상방법)

  • 이백영;황병원;이태승
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.6
    • /
    • pp.585-591
    • /
    • 2002
  • While the multilayer perceptron(MLP) provides several advantages against the existing pattern recognition methods, it requires relatively long time in learning. This results in prolonging speaker enrollment time with a speaker verification system that uses the MLP as a classifier. This paper proposes a method that shortens the enrollment time through adopting the cohort speakers method used in the existing parametric systems and reducing the number of background speakers required to learn the MLP, and confirms the effect of the method by showing the result of an experiment that applies the method to a continuant and MLP-based speaker verification system.

Electroencephalogram-Based Driver Drowsiness Detection System Using Errors-In-Variables(EIV) and Multilayer Perceptron(MLP) (EIV와 MLP를 이용한 뇌파 기반 운전자의 졸음 감지 시스템)

  • Han, Hyungseob;Song, Kyoung-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.10
    • /
    • pp.887-895
    • /
    • 2014
  • Drowsy driving is a large proportion of the total car accidents. For this reason, drowsiness detection and warning system for drivers has recently become a very important issue. Monitoring physiological signals provides the possibility of detecting features of drowsiness and fatigue of drivers. Many researches have been published that to measure electroencephalogram(EEG) signals is the effective way in order to be aware of fatigue and drowsiness of drivers. The aim of this study is to extract drowsiness-related features from a set of EEG signals and to classify the features into three states: alertness, transition, and drowsiness. This paper proposes a drowsiness detection system using errors-in-variables(EIV) for extraction of feature vectors and multilayer perceptron (MLP) for classification. The proposed method evaluates robustness for noise and compares to the previous one using linear predictive coding (LPC) combined with MLP. From evaluation results, we conclude that the proposed scheme outperforms the previous one in the low signal-to-noise ratio regime.

Protein Disorder Prediction Using Multilayer Perceptrons

  • Oh, Sang-Hoon
    • International Journal of Contents
    • /
    • v.9 no.4
    • /
    • pp.11-15
    • /
    • 2013
  • "Protein Folding Problem" is considered to be one of the "Great Challenges of Computer Science" and prediction of disordered protein is an important part of the protein folding problem. Machine learning models can predict the disordered structure of protein based on its characteristic of "learning from examples". Among many machine learning models, we investigate the possibility of multilayer perceptron (MLP) as the predictor of protein disorder. The investigation includes a single hidden layer MLP, multi hidden layer MLP and the hierarchical structure of MLP. Also, the target node cost function which deals with imbalanced data is used as training criteria of MLPs. Based on the investigation results, we insist that MLP should have deep architectures for performance improvement of protein disorder prediction.

A comparison of Multilayer Perceptron with Logistic Regression for the Risk Factor Analysis of Type 2 Diabetes Mellitus (제2형 당뇨병의 위험인자 분석을 위한 다층 퍼셉트론과 로지스틱 회귀 모델의 비교)

  • 서혜숙;최진욱;이홍규
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.4
    • /
    • pp.369-375
    • /
    • 2001
  • The statistical regression model is one of the most frequently used clinical analysis methods. It has basic assumption of linearity, additivity and normal distribution of data. However, most of biological data in medical field are nonlinear and unevenly distributed. To overcome the discrepancy between the basic assumption of statistical model and actual biological data, we propose a new analytical method based on artificial neural network. The newly developed multilayer perceptron(MLP) is trained with 120 data set (60 normal, 60 patient). On applying test data, it shows the discrimination power of 0.76. The diabetic risk factors were also identified from the MLP neural network model and the logistic regression model. The signigicant risk factors identified by MLP model were post prandial glucose level(PP2), sex(male), fasting blood sugar(FBS) level, age, SBP, AC and WHR. Those from the regression model are sex(male), PP2, age and FBS. The combined risk factors can be identified using the MLP model. Those are total cholesterol and body weight, which is consistent with the result of other clinical studies. From this experiment we have learned that MLP can be applied to the combined risk factor analysis of biological data which can not be provided by the conventional statistical method.

  • PDF

Hybridized dragonfly, whale and ant lion algorithms in enlarged pile's behavior

  • Ye, Xinyu;Lyu, Zongjie;Foong, Loke Kok
    • Smart Structures and Systems
    • /
    • v.25 no.6
    • /
    • pp.765-778
    • /
    • 2020
  • The present study intends to find a proper solution for the estimation of the physical behaviors of enlarged piles through a combination of small-scale laboratory tests and a hybrid computational predictive intelligence process. In the first step, experimental program is completed considering various critical influential factors. The results of the best multilayer perceptron (MLP)-based predictive network was implemented through three mathematical-based solutions of dragonfly algorithm (DA), whale optimization algorithm (WOA), and ant lion optimization (ALO). Three proposed models, after convergence analysis, suggested excellent performance. These analyses varied based on neurons number (e.g., in the basis MLP hidden layer) and of course, the level of its complexity. The training R2 results of the best hybrid structure of DA-MLP, WOA-MLP, and ALO-MLP were 0.996, 0.996, and 0.998 where the testing R2 was 0.995, 0.985, and 0.998, respectively. Similarly, the training RMSE of 0.046, 0.051, and 0.034 were obtained for the training and testing datasets of DA-MLP, WOA-MLP, and ALO-MLP techniques, while the testing RMSE of 0.088, 0.053, and 0.053, respectively. This obtained result demonstrates the excellent prediction from the optimized structure of the proposed models if only population sensitivity analysis performs. Indeed, the ALO-MLP was slightly better than WOA-MLP and DA-MLP methods.

An Improvement of the MLP Based Speaker Verification System through Improving the learning Speed and Reducing the Learning Data (학습속도 개선과 학습데이터 축소를 통한 MLP 기반 화자증명 시스템의 등록속도 향상방법)

  • Lee, Baek-Yeong;Lee, Tae-Seung;Hwang, Byeong-Won
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.3
    • /
    • pp.88-98
    • /
    • 2002
  • The multilayer perceptron (MLP) has several advantages against other pattern recognition methods, and is expected to be used as the learning and recognizing speakers of speaker verification system. But because of the low learning speed of the error backpropagation (EBP) algorithm that is used for the MLP learning, the MLP learning requires considerable time. Because the speaker verification system must provide verification services just after a speaker's enrollment, it is required to solve the problem. So, this paper tries to make short of time required to enroll speakers with the MLP based speaker verification system, using the method of improving the EBP learning speed and the method of reducing background speakers which adopts the cohort speakers method from the existing speaker verification.

Performance Comparision of Multilayer Perceptron Nueral Network and Maximum Likelihood Classifier for Category Classification (카테고리분류를 위한 다층퍼셉트론 신경회로망과 최대유사법의 성능비교)

  • Lim, Tae-Hun;Seo, Yong-Su
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.4 no.2 s.8
    • /
    • pp.137-147
    • /
    • 1996
  • In this paper, the performances between maximum likelihood classifier based on statistical classification and multilayer perceptrons based on neural network approaches were compared and evaluated Experimental results from both neural network method and statistical method are presented. In addition, the nature of two different approches are analyzed based on the experiments.

  • PDF

On the Noise Robustness of Multilayer Perceptrons (다층퍼셉트론의 잡음 강건성)

  • 오상훈
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2003.11a
    • /
    • pp.213-217
    • /
    • 2003
  • In this paper, we analysize the noise robustness of MLPs(Multilayer perceptrons). Also, as a preprocessing stage of MLPs to improve noise robustness, we consider the ICA(independent component analysis) and PCA(principle component analysis). After analyzing the noise redunction effect using PCA or ICA, we verify the noise robustness of MLPs through handwritten-digit recognition simulations.

  • PDF

Optimal Design of Fuzzy Hybrid Multilayer Perceptron Structure (퍼지 하이브리드 다층 퍼셉트론구조의 최적설계)

  • Kim, Dong-Won;Park, Byoung-Jun;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2977-2979
    • /
    • 2000
  • A Fuzzy Hybrid-Multilayer Perceptron (FH-MLP) Structure is proposed in this paper. proposed FH-MLP is not a fixed architecture. that is to say. the number of layers and the number of nodes in each layer of FH-MLP can be generated to adapt to the changing environment. FH-MLP consists of two parts. one is fuzzy nodes which each node is operated as a small fuzzy system with fuzzy implication rules. and its fuzzy system operates with Gaussian or Triangular membership functions in premise part and constants or regression polynomial equation in consequence part. the other is polynomial nodes which several types of high-order polynomial such as linear. quadratic. and cubic form are used and is connected as various kinds of multi-variable inputs. To demonstrate the effectiveness of the proposed method. time series data for gas furnace process has been applied.

  • PDF

A Study on the Performance Improvement of MLP Model for Kodály Hand Sign Scale Recognition

  • Na Gyeom YANG;Dong Kun CHUNG
    • Korean Journal of Artificial Intelligence
    • /
    • v.12 no.3
    • /
    • pp.33-39
    • /
    • 2024
  • In this paper, we explore the application of Kodaly hand signs in enhancing children's music education, performances, and auditory assistance technologies. This research focuses on improving the recognition rate of Multilayer Perceptron (MLP) models in identifying Kodaly hand sign scales through the integration of Artificial Neural Networks (ANN). We developed an enhanced MLP model by augmenting it with additional parameters and optimizing the number of hidden layers, aiming to substantially increase the model's accuracy and efficiency. The augmented model demonstrated a significant improvement in recognizing complex hand sign sequences, achieving a higher accuracy compared to previous methods. These advancements suggest that our approach can greatly benefit music education and the development of auditory assistance technologies by providing more reliable and precise recognition of Kodaly hand signs. This study confirms the potential of parameter augmentation and hidden layers optimization in refining the capabilities of neural network models for practical applications.