• Title/Summary/Keyword: multifunctional robot

Search Result 10, Processing Time 0.041 seconds

Development of multifunctional handling robot (탑성식 다목적 핸들링로봇의 개발)

  • Jun J.U.;Park H.M.;Jung J.S.;Kim S.K.;Lee W.Y.;Ha M.K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1656-1659
    • /
    • 2005
  • earning industry is high in terms of side of creation of the added value or progress of technology rightly hereupon. This research raises or designed multi-function handling robot that can make welding, assembly conveniently catching large size work waterRatio that robot occupies is low level worldwide fairly in susdension wire, electricity electron and neutralization learning industry and domestic industry of this is staying in average leve. Can speak that grafting of robotic machine and neutralization

  • PDF

A Adaptive and Fuzzy control of Inspection robot for Underground Pipes (지하매설파이프 검사로봇의 적응퍼지 위치 제어)

  • Kim, Do-Woo;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.670-673
    • /
    • 1999
  • In this paper, we present a robust motion controller based on Adaptive-Fuzzy technique is proposed that multifunctional vehicle(MVR) for two DOF mobile robot can perform detailed inspection of physical conditions of sewage pipes as well as can effectively repair the damaged portions of the inner walls. The main difficulties in controlling this multifunctional robot vehicles lie in the fact that vehicles usually have three degrees of freedom in position and orientation in spite of having only two degrees of freedom for motion control in tracking mode. Decomposition of error between the reference posture and the current posture makes control of speed and steering possible. The Gyro compass part and Inclonometer of the robot is configured in order to realize position of robot. The proposed Adaptive-Fuzzy motion controller has two main characteristics: The one guarantees that the MVR follows the reference trajectory; the other one compensates the dynamics of the MVR. Simulation results are provided to validate the proposed controller. Experiments have been used to verify the effectiveness and robustness of the motion controller.

  • PDF

Omni-directional Gait Control of Quadruped Walking Robot

  • Son, Tae-Young;Kang, Tae-Hun;Kim, Hyung-Seok;Choi, Hyouk-Ryeol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2529-2534
    • /
    • 2003
  • A quadruped walking robot has a superior adaptablility as well as highly adaptable mobility in various environments. These special advantages are outstanding in the mobile robot group. In this work, we introduce the method for omni-directional gait and rotational gait which is the generalized control algorithm to perform any direction commands. In addition, to improve the stability of quadruped walking robot, we performed the optimization between walking angle and sequence of feet. The proposed ideas are applied to the actual design of MRWALLSPECT III(Multifunctional Robot for Wall inSpection version 3) that is designed to inspect of the large surface of industrial utilities. By implementing the proposed idea on the robot, it’s effectiveness is experimentally confirmed.

  • PDF

Unified Strategy for Quadruped Walking Robot in Unstructured Environment

  • Kang, Tae-Hun;Son, Tae-Young;Kim, Hyung-Seok;Choi, Hyouk-Ryeol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.639-644
    • /
    • 2003
  • An unstructured environment requires a robot to possess outstanding mobility and advanced control algorithms since there exist complicated configurations such as obstacle, uneven surface, etc. Especially, when a quadruped robot walks in these environments, obstacles in the walking route will obstruct the walking or may give rise to a serious trouble. In this paper, we introduce a strategy for the stable walking in unstructured environment. The proposed strategy consists of two control algorithms. One is a collision{free algorithm to avoid obstacles and the other is an algorithm to overcome any obstacle. These are based on the obstacle detection method and a shape reconstruction algorithm, Which algorithms are described in detail. In addition, the validity of these algorithms have been demonstrated through experiments using a quadruped walking robot called "MRWALLSPECT III(Multifunctional Robot for Wall inSPECTion version 3 )".

  • PDF

Development of In-Pipe Robot Using Clutch-Based Selective Driving Algorithm (클러치기반의 선택적 구동방식을 이용한 배관로봇의 개발)

  • Kim, Do-Wan;Roh, Se-Gon;Lee, Jung-Sub;Lee, Soo-Hwan;Choi, Hyouk-Ryeol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.3
    • /
    • pp.223-231
    • /
    • 2008
  • This paper introduces a robot called the MRINSPECT V (Multifunctional Robotic crawler for Inpipe in-SPECTion V) for the inspection of pipelines with a nominal 8-in inside diameter. Based on the mechanism of the previous model MRINSPECT IV, we developed a new MRINSPECT V by using the differential driving mechanism, so that just simply controlling the speed of each driving units helps the robot to travel effectively inside the pipelines. Furthermore, the robot uses clutches in transmitting driving power to wheels. This clutch mechanism enables MRINSPECT V to select the suitable driving method according to the shape of pipeline. In this paper, the critical points in design and construction of the proposed robot are described with the preliminary results to provide good mobility and increase the efficiency.

Gait Planning of Quadruped Walking and Climbing Robot in Convex Corner Environment

  • Loc, Vo Gia;Kang, Tae-Hun;Song, Hyun-Sup;Choi, Hyouk-Ryeol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.314-319
    • /
    • 2005
  • When a robot navigates in the real environment, it frequently meets various environments that can be expressed by simple geometrical shapes such as fiat floor, uneven floor, floor with obstacles, slopes, concave or convex corners, etc. Among them, the convex corner composed of two plain surfaces is the most difficult one for the robot to negotiate. In this paper, we propose a gait planning algorithm to help the robot overcome the convex environment. The trajectory of the body is derived from the maximum distance between the edge boundary of the corner and the bottom of the robot when it travels in the convex environment. Additionally, we find the relation between kinematical structure of the robot and its ability of avoiding collision. The relation is realized by considering the workspace and the best posture of the robot in the convex structure. To provide necessary information for the algorithm, we use an IR sensor attached in the leg of the robot to perceive the convex environment. The validity of the gait planning algorithm is verified through simulations and the performance is demonstrated using a quadruped walking robot, called "MRWALLSPECT III"( Multifunctional Robot for WALL inSPECTion version 3).

  • PDF

Development of Differentially Driven Inpipe Inspection Robot for Underground Gas Pipeline (지하 매설 가스배관용 차동 구동형 배관검사 로봇의 개발)

  • No, Se-Gon;Ryu, Seong-Mu;Choe, Hyeok-Ryeol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.2019-2029
    • /
    • 2001
  • Up to now a wide variety of researches on inpipe inspection robots have been introduced, but it still seems to be difficult to construct a robot providing mobility sufficient to navigate inside the complicated configuration of underground pipelines. This paper introduces a robot called MRINSPECT IV(Multifunctional Robotic Crawler for inpipe inSPECTion IV) for the inspection of urban gas pipelines with a nominal 4-inch inside diameter. The proposed robot can freely move along the basic configuration of pipelines such as along horizontal or vertical pipelines. Moreover it can travel along reducers, elbows, and steer in the branches by modulating the speeds of driving modules. Especially, its capability for steering in tile three-dimensional pipeline configuration has a competative edge over the other ones and provides excellent mobility in navigation. Its critical points in the design and construction are introduced and results of experiments are given.

Mutifunctional EMI Shielding and Sensing Applications based on Low-dimensional Nanomaterials (저차원 나노 소재 기반 다기능 전자파 차폐 및 센싱 응용기술)

  • Min, B.K.;Yi, Y.;Nguyen, V.T.;Mondal, S.;Choi, C.G.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.4
    • /
    • pp.11-20
    • /
    • 2020
  • With the widespread use of high-performance electronics and mobile communications, electromagnetic interference (EMI) shielding has become crucial for protection against malfunctioning of electronic equipment and harmful effects to human health. In addition, smart sensor technologies will be rapidly developed in untact (non-contact) environments and personal healthcare fields. Herein, we introduce our recently developed technologies for flexible multifunctional EMI shielding, and highly sensitive wearable pressure-strain and humidity sensors realized using low-dimensional nanomaterials.

Multifunctional Marine Exploration Robot for Fish Farm Management (양식장 관리를 위한 다기능 해양탐사 로봇)

  • Yeo, Sang-Sam;Park, Joo-Ryeoll;Lee, Dong-Kyu;Kim, Myeong-Gi;Yu, Ju-Young;Lee, Sang Hyeop
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.489-490
    • /
    • 2021
  • 본 연구에서는 해양사고 처리 중 발생하는 인명사고 발생률을 감소시키고, 효율적으로 양식장을 관리하는 것을 전제로 카메라와 센서를 다기능 해양탐사 로봇에 적용하고자 한다. 현재의 양식장 관리 시스템은 수온 체크만 할 수 있게 되어있다. 이러한 시스템은 양식어에게 적합한 환경을 제공해주기 쉽지 않다. 본 논문은 이러한 문제점들을 개선하기 위해 기존의 해양 처리시스템과 양식 시스템 대신 카메라와 수온 센서, pH 농도 센서, 초음파 거리 센서, DC 모터, 블루투스 모듈을 적용한 다기능 해양탐사 로봇 기술을 제안한다. 기존의 시스템과는 다르게 안전하고 효율적으로 환경을 분석하고, 제어할 수 있다.

  • PDF

Research on the Development of Automated Multifunction-Integrated Motion Bed (자동화된 다기능 통합 전동 침대 개발에 대한 연구)

  • Lee, Youngdae;Choi, Moonsoo;Jang, Ilhwan;Kim, Chang-Young;Choi, Dong-Soo;Kim, Minsung;Kim, Wonjoon;Kim, Dong-Hwan
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.5
    • /
    • pp.215-222
    • /
    • 2018
  • Recently, various motion beds have been actively developed and popularized. The motion bed has the functions of height adjustment, back plate rising, knee lifting, tilt function and left / right rotation, and the remote control can conveniently be used by the patient himself or the caregiver to move the patient. However, since the medical bed for use does not have a function of preventing pressure ulcers, exchanging sheets, and transferring patients, it is necessary to disperse body pressure by using a pressure ulcer prevention matrix to prevent pressure ulcers. However, it is accompanied by muscle strength and hard work, and nurses are avoiding difficult nursing care. In this study, we developed the first prototype in the world and confirmed that the system works normally with the goal of developing multifunctional beds that automatically perform the prevention of bed sores, the exchange of sheets and the transfer of patients in order to facilitate such nursing work. It is anticipated that the proposed multifunctional motorized bed in the future will be a model of a medical robot for smart healthcare.