• Title/Summary/Keyword: multicarrier system

Search Result 104, Processing Time 0.027 seconds

A SCPWL Model-Based Digital Predistorter for Nonlinear High Power Amplifier Linearization (비선형 고출력 증폭기의 선형화를 위한 SCPWL 모텔 기반의 디지털 사전왜곡기)

  • Seo, Man-Jung;Jeon, Seok-Hun;Im, Sung-Bin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.10
    • /
    • pp.8-16
    • /
    • 2010
  • An orthogonal frequency division multiplexing (OFDM) system is a special case of multicarrier transmission, where a single data stream is transmitted over a number of lower-rate subcarriers. One of the main reasons to use OFDM is to increase robustness against frequency-selective fading or narrowband interference. However, in the radio systems the distortion introduced by high power amplifiers (HPA's) such as traveling wave tube amplifier (TWTA) considered in this paper, is also critical. Since the signal amplitude of the OFDM system is Rayleigh-distributed, the performance of the OFDM system is significantly degraded by the nonlinearity of the HPA in the OFDM transmitter. In this paper, we propose a simplicial canonical piecewise-linear (SCPWL) model based digital predistorter to compensate for nonlinear distortion introduced by an HPA in an OFDM system. Computer simulation is carried on an OFDM system under additive white Gaussian noise (AWGN) channels with 16-QAM and 64-QAM modulation schemes and modulator/demodulator implemented with 1024-point FFT/IFFT. The simulation results demonstrate that the proposed predistorter achieves significant performance improvement by effectively compensating for the nonlinearity introduced by the HPA.

Multistage Parallel Nulling-Partial PIC Receiver for Downlink MIMO MC-CDMA Systems (하향링크 다중 안테나 MC-CDMA 시스템을 위한 다단계 병렬 널링 및 병렬 부분 간섭 제거 수신기 설계)

  • 구정회;김경연;심세준;이충용
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.11
    • /
    • pp.1-7
    • /
    • 2004
  • We propose multistage parallel nulling (MPN) partial parallel interference cancellation (PPIC) receiver for downlink multiple-input multiple-output (MIMO) multicarrier (MC)-code division multiple access (CDMA) systems. Though the V-BLAST is a popular MIMO receiver, it shows error floor for multiuser downlink MIMO MC-CDMA systems. The proposed MPN-PPIC receiver does not produce error floor for multiuser case, and achieves substantial performance gains with multistage processing. For single user case, the proposed method also surpasses the V-BLAST receiver with multistage processing for MIMO MC-CDMA systems with chip level interleaving. The system performance of the proposed MPN-PPIC receiver is evaluated through computer simulations.

Quantized Channel State Information Feedback Scheme for Multi-carrier Systems (다중 반송파 시스템을 위한 양자화된 채널 상태 정보 피드백 기법)

  • Seo Hee-Jung;Kim Seayoung;Kim Nak-Myeong;Kim Kiho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.12A
    • /
    • pp.1146-1152
    • /
    • 2005
  • In this paper, we propose a compressed quantized channel state information (CQCSI) feedback scheme for multi-carrier mobile communication systems. The proposed CQCSI figures out the contiguous subsequences of equal QCSI's as separate types of runs across the subcarriers, and then encodes the types of runs using a truncated Huffman coding algorithm. Computer simulation shows that the proposed algorithm can reduce the QCSI feedback up to one tenth of the uncompressed, while providing a comparable performance with the conventional QCSI feedback schemes. To cope with special cases when the frequency selective fading is very high, we also propose a restricted CQCSI feedback scheme. The restricted CQCSI feedback has been proved under vehicular B channel model.

Simple Blind Channel Estimation Scheme for Downlink MC-CDMA Systems (하향링크 MC-CMDMA 시스템을 위한 간단한 미상 채널 추정 방법)

  • Seo, Bang-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.6A
    • /
    • pp.480-487
    • /
    • 2012
  • In multicarrier code-division multiple access (MC-CDMA) systems, conventional blind channel estimation schemes require the inverse matrix calculation or eigenvalue decomposition of the received signal covariance matrix. Therefore, computational complexity of the conventional schemes is too high and they cannot be employed in downlink systems. In this paper, we propose a simple blind channel estimation scheme with very low computational complexity. Simulation results show that the proposed scheme has better channel estimation and bit error rate (BER) performance than the conventional schemes.

An Improved Rayleigh Fading Compensation Algorithm with Modified Sinc Interpolation (수정된 Sinc 보간법을 이용한 새로운 Rayleigh 페이딩 보상 알고리즘)

  • 이창재
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.10A
    • /
    • pp.1492-1498
    • /
    • 2000
  • Pilot symbol aided modulation (PSAM) using the conventional sinc interpolation (CSI) achieves nearly the same BER performance as Caver' optimal Wiener interpolation but with much less complexity. The CSI, however, has to use a non-rectangular window function that is applied to the sinc function to smooth out the abrupt truncation of rectangular window. In this paper, we propose the modified sinc interpolation (MSI). With the weighting factor the MSI scheme with no window has almost the same BER performance as the CSI scheme using window, In addition, if we use the MSI with a window its BER performance gets close to that of the theoretical one. We assume the multicarrier QAM system and an optimal frame structure for performance evaluation.

  • PDF

BER Performance of an Offset Stacked Spreading CDMA System Based on Orthogonal Complementary Codes (직교 상보코드 기반의 옵셋누적 확산 CDMA 시스템의 비트오율 성능)

  • Kim, Myoung-Jin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.3
    • /
    • pp.1-8
    • /
    • 2009
  • DS-CDMA system has very low bandwidth efficiency, hence it is difficult to maintain high spreading gain for high speed data transmission. Offset stacked spreading CDMA(OSS-CDMA) is a transmission scheme where spreading codes with chip offsets are overlapped, then transmitted. This kind of system requires a code set that guarantees orthogonality between codes in the set of any cjip offset. An orthogonal complementary code set has a property that the crosscorrelation function between codes in the group is zero for all shifts, hence it can be used for an OSS-CDMA system. In an OCC-OSS CDMA system each user is assigned an orthogonal complementary code group. User data bit is spread by the given codes and overlapped, and the code sequences are transmitted with multicarrier. However, the offset stacked spread sequences are multilevel, and the number of symbol levels is increases as the spreading efficiency is increased. When the OSS sequence is transmitted with MPSK mapping, the signal constellation becomes dense, and the system is easily affected by channel impairments. In this paper, we propose a level clipping scheme on OSS sequence before MPSK modulated. Simulations have been carried out to investigate the BER performance of the OCC-OSS CDMA system in AWGN environment. The results show that proposed scheme outperform the scheme without level clipping.

A Power Control for OFDM Transmission Scheme in a Cochannel Interference Environment (동일 채널 간섭 환경에서 OFDM 전송 방식을 위한 송신 전력 제어)

  • Park, Jin-Kyu;Lim, Chang-Heon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.3A
    • /
    • pp.271-280
    • /
    • 2007
  • This paper presents a power control scheme for OFDM based wireless communication systems in a multicell environment with co-channel interference which enables each system to achieve its target level of transmission bit rate. Generally, the optimal or near optimal power control scheme for multicarrier systems is Down to control the power level of each subcarrier in accordance with the associated channel status, which may be found in WF(waterfilling) and WF(iterative waterfilling) schemes. However, this requires the channel state information associated with every subchannel to be fed back from the receiver to its transmitter for successful power control. If the wireless channel exhibits relatively fast fading or the number of subcarriers is large, this may result in a considerable overhead. Here, in order to alleviate this problem, we propose a power control strategy for an OFDM systems maintaining the same power level over all the subcarriers. Also we prove its convergence, compare its complexity with that of the existing IWF algorithm, and examine its convergence characteristic through computer simulations.

A High Data Rate Medical Implant Communication System Transmitter for Body Implantable Devices (체내이식용 기기를 위한 고속 MICS 송신기 구현)

  • Im, Jun-Ha;Jung, Yun-Ho;Kim, Jae-Seok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.4
    • /
    • pp.24-31
    • /
    • 2011
  • A high data rate Medical Implant Communications Service (MICS) transmitter for implantable medical devices (IMD) is proposed. An orthogonal frequency division multiplexing (OFDM)-based multicarrier scheme is used to overcome the data rate limitation caused by the narrow bandwidth of 300 kHz. The proposed transmitter utilizes multiple MICS channels simultaneously, supporting increased data rate. To satisfy the MICS regulation, various schemes are applied including optimized subcarrier allocation and inverse fast Fourier transform (IFFT) architecture, and additional sidelobe suppression technique. Simulation results show that the proposed transmitter can support a maximum data rate of 4.86 Mbps, which is more than ten times faster than the previous systems.

Asymptotic Performance of MIMO-MC-CDMA Systems in Multi-cell Environments (다중셀 환경에서 MIMO-MC-CDMA시스템의 점근적 성능)

  • Kim, Kyeong-Yeon;Ham, Jae-Sang;Lee, Chung-Yong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.7 s.361
    • /
    • pp.47-52
    • /
    • 2007
  • This paper analyzes the output signal-to-interference-plus-noise ratio (SINR) for a multiple-input-multiple-output (MIMO) multicarrier code division multiple access (MC-CDMA) system with minium mean square error receivers in multi-cell environments. A previous work in single cell environments is extended into analysis in multi-cell environments. The use of Haar unitary code matrix for asymptotic analysis causes other cell interferences expressed with a diagonal matrix haying different diagonal values. This paper shows that other cell interferences converge to an identity matrix whose gain is expressed by only other cell interference power in mean square sense and finds asymptotic deterministic SINRs for a given other cell interference. Under the assumption that the sum of lognormal fading components is distributed by other lognormal function, we show the comparison between theoretical performances and simulations from the view point of bit error rate and present average throughput performance according to the cell radius.

Frequency-Code Domain Contention in Multi-antenna Multicarrier Wireless Networks

  • Lv, Shaohe;Zhang, Yiwei;Li, Wen;Lu, Yong;Dong, Xuan;Wang, Xiaodong;Zhou, Xingming
    • Journal of Communications and Networks
    • /
    • v.18 no.2
    • /
    • pp.218-226
    • /
    • 2016
  • Coordination among users is an inevitable but time-consuming operation in wireless networks. It severely limit the system performance when the data rate is high. We present FC-MAC, a novel MAC protocol that can complete a contention within one contention slot over a joint frequency-code domain. When a node takes part in the contention, it generates randomly a contention vector (CV), which is a binary sequence of length equal to the number of available orthogonal frequency division multiplexing (OFDM) subcarriers. In FC-MAC, different user is assigned with a distinct signature (i.e., PN sequence). A node sends the signature at specific subcarriers and uses the sequence of the ON/OFF states of all subcarriers to indicate the chosen CV. Meanwhile, every node uses the redundant antennas to detect the CVs of other nodes. The node with the minimum CV becomes the winner. The experimental results show that, the collision probability of FC-MAC is as low as 0.05% when the network has 100 nodes. In comparison with IEEE 802.11, contention time is reduced by 50-80% and the throughput gain is up to 200%.