Browse > Article

A Power Control for OFDM Transmission Scheme in a Cochannel Interference Environment  

Park, Jin-Kyu (부경대학교 전자공학과)
Lim, Chang-Heon (부경대학교 전자컴퓨터정보통신공학부)
Abstract
This paper presents a power control scheme for OFDM based wireless communication systems in a multicell environment with co-channel interference which enables each system to achieve its target level of transmission bit rate. Generally, the optimal or near optimal power control scheme for multicarrier systems is Down to control the power level of each subcarrier in accordance with the associated channel status, which may be found in WF(waterfilling) and WF(iterative waterfilling) schemes. However, this requires the channel state information associated with every subchannel to be fed back from the receiver to its transmitter for successful power control. If the wireless channel exhibits relatively fast fading or the number of subcarriers is large, this may result in a considerable overhead. Here, in order to alleviate this problem, we propose a power control strategy for an OFDM systems maintaining the same power level over all the subcarriers. Also we prove its convergence, compare its complexity with that of the existing IWF algorithm, and examine its convergence characteristic through computer simulations.
Keywords
Power control; Iterative waterfilling; OFDM; Cochannel Interference; Adaptive modulation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Zander, 'Performance of optimum transmitter power control in cellular radio systems,' IEEE Trans. Veh. Technol., vol 41, Issue 1, pp. 57-62, Feb 1992   DOI   ScienceOn
2 W. Yu, G, Ginis and J. M. Cioffi, 'Distributed multiuser power control for digital subscriber lines,' IEEE J. Select. Areas Commun., vol. 20, Issue. 5, pp. 1105-1115, June 2002   DOI   ScienceOn
3 C. Yih and E. Geranotis, 'Centralized power allocation algorithms for OFDM cellular networks,' IEEE MILCOM 2003, vol. 2, pp. 1250-1255, Oct 2003
4 L. Yan, Z. Wenan, and S. Junde, 'An adaptive subcarrier, bit and power allocation algorithm for multi-cell OFDM systems,' IEEE CCECE 2003, vol. 3, pp. 1531 - 1534, May 2003
5 G. Kulkami, S. Adlakha, and M. Srivastava, 'Subcarrier allocation and bit loading algorithms for OFDMA-based wireless networks,' IEEE Trans. Mobile Computing., vol. 4, Issue 6, pp. 652-662, Nov 2005   DOI   ScienceOn
6 I. Sason, 'On achievable rate regions for the Gaussian interference channel,' IEEE ISIT 2004., pp. 1, June 2004
7 J. Zander,'Distributed cochannel interference control in cellular radio systems,' IEEE Trans. Veh. Technol., vol 41, Issue 3, pp. 305-311, Aug 1992   DOI   ScienceOn
8 J. Lee, R. V. Sonalkar, and J. M. Cioffi, 'Multi-user discrete bit-loading for DMT-based DSL systems,' IEEE GLOBECOM 2002, vol. 2, pp. 1259-1263, Nov 2002
9 R. D. Yates, 'A framework for uplink power control in cellular radio systems,' IEEE Commun. Mag., vol. 13, Issue 7, pp. 1341-1347, Sept 1995
10 W. Yu and J. M. Cioffi, 'On constant power water-filling,' IEEE ICC 2001., vol. 6, pp. 1665-1669, June 2001
11 H. Harada and R. Prasad, Simulation and Software Radio for Mobile Communication., Artech House, 2002
12 H. Su and E. Geraniotis, 'A distributed power allocation algorithm with adaptive modulation for multi-cell OFDM systems,' IEEE International Symposium on Spread Spectrum Techniques and Applications, vol. 2, pp. 474 - 478, Sept. 1998
13 X. Qiu and K. Chawla, 'On the performance of adaptive modulation in cellular systems,' IEEE Trans. Commun., vol. 47, Issue 6, pp. 884-895, June 1999   DOI   ScienceOn
14 S. T. Chung and J. M. Cioffi, 'Rate and power control in a two-user multicarrier channel with no coordination : The optimal scheme versus a suboptimal method,' IEEE Trans. Commun., vol. 51, Issue 11, pp. 1768-1772, Nov 2003   DOI   ScienceOn
15 G. J. Foschini and Z. Miljanic, 'A simple distributed autonomous power control algorithm and its convergence,' IEEE Trans. Veh. Technol., vol 42, Issue 4, pp. 641-646, Nov 1993   DOI   ScienceOn
16 C. Yih and E. Geraniotis, 'Power allocation and control for coded OFDM wireless networks,' IEEE International Symposium on Spread Spectrum Techniques and Applications, vol. 1, pp. 164 - 168, Sept. 2000