• Title/Summary/Keyword: multiband antenna

Search Result 53, Processing Time 0.024 seconds

Design of Dual Half Wavelength Loaded Line Antenna for Multiband Mobile Handsets (다중 대역 이동 통신 단말기용 이중 반파장 로디드 라인 안테나 설계)

  • Park, Jin-Woo;Kim, Duk-Gu;Jung, Byung-Woon;Park, Myun-Joo;Cheong, Young-Seek;Lee, Byung-Je
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.3 s.118
    • /
    • pp.265-272
    • /
    • 2007
  • In this paper, a frequency changeable antenna using dual half wavelength loaded line structure is proposed for multiband mobile handset applications. The proposed antenna has a capability of independent frequency shift by controlling two added inductance values in two different bands. Experimental results indicate that the proposed antenna provides enough effective bandwidth to cover $CELLULAR(824\sim894\;MHz)$, $EGSM(880\sim960\;MHz)$, $DCS1800(1,710\sim1,880\;MHz)$, $PCS1900(1,850\sim1,990\;MHz)$ and $WCDMA(1,920\sim2,170\;MHz)$ bands and peak gain variation is only 0.54 dB.

Double Resonance Characteristics of Crossed Planar Monopole Antenna by L-Shaped Slit (L형 슬릿에 의한 십자형 평판 모노폴 안테나의 이중공진 특성)

  • Shim, Jae-Ruen
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.3
    • /
    • pp.508-512
    • /
    • 2007
  • In this paper, a novel wideband crossed planar monopole antenna with the double resonance characteristics is proposed. The proposed monopole antenna consists of a wideband crossed planar monopole antenna and L-shaped slits. In order to generate double resonance characteristics on the proposed monopole antenna, the length of L-shaped slit on the antenna surface is obtained from the quarter-wavelength of the second resonance frequency The double resonance characteristics of the proposed antenna can be easily designed by the control of length of L shaped slit at an interesting frequency. The proposed antenna having an omnidirectional radiation pattern and a high gain over the double resonance frequency bands, respectively, is suitable for mobile multiband antenna.

  • PDF

Design of Compact Microstrip Patch Antenna for Short Distance WLAN (근거리 WLAN을 위한 광대역 마이크로스트립 패치 안테나 설계)

  • Choi, Yong-Seok
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.1
    • /
    • pp.67-74
    • /
    • 2014
  • In this paper, we designed a multiband monopole antenna for next-generation WLAN system. In conventional WLAN system, UWB antennas were used together, and, because the radiation occurs in different parts depending on the antenna structure, it has the disadvantage of having an unstable impulse response characteristic due to dispersion characteristics. Although a UWB antenna that has suitable radiation pattern for WLAN band, it does not have good impedance matching and has severe echo. Therefore, in this paper, a monopole antenna was designed by using CPW power feed so that various impedances can be easily implemented when designing an antenna and more parameters can be derived that can be used for design for optimal performance.

Design of CPW-Feed Multi-Band Monopole Antenna for Next Generation WLAN Systems (차세대 WLAN을 위한 CPW 급전 다중대역 모노폴 안테나 설계)

  • Choi, Yong-Seok;Seong, Hyeon-Kyeong;Rho, Jung-Kyu
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.1
    • /
    • pp.38-44
    • /
    • 2014
  • In this paper, we designed a multiband monopole antenna for next-generation WLAN system. In conventional WLAN system, UWB antennas were used together, and, because the radiation occurs in different parts depending on the antenna structure, it has the disadvantage of having an unstable impulse response characteristic due to dispersion characteristics. Although a UWB antenna that has suitable radiation pattern for WLAN band, it does not have good impedance matching and has severe echo. Therefore, in this paper, a monopole antenna was designed by using CPW power feed so that various impedances can be easily implemented when designing an antenna and more parameters can be derived that can be used for design for optimal performance.

Extended Loop Antenna for the Mobile Handset (휴대 단말기용 연장 루프안테나)

  • Son, Taeho;Ryu, Hwang
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.2
    • /
    • pp.30-37
    • /
    • 2013
  • An extended loop antenna, to be continued BLA(Branch Loop Antenna) in the previous volume, for the mobile handset is designed in this paper. It's introduced an ELA(Extended Loop Antenna) that is added extended loops to rectangular loop, and verified antenna performances for applying to mobile handset. Extended loops are located upside, left and right side of rectangular loop, and low resonance is obtained by the length of line. Multiple resonances are established by the extended loops, and obtained the desired service bands by the connection points and lengths. By the implementation and measurement for the multiband ELA, it's showed -3.0~-1.46dBi average gains with 50.15~71.41% efficiencies at CDMA/GSM frequency band, and -8.28~-1.7dBi average gains with 14.87~67.68% efficiencies at DCS/USPCS/WCDMA frequency band.

Design of compact antenna for dual-band (이중대역 소형 안테나 설계)

  • Bayarmaa, Bayarmaa;Kim, Bit-Na;Kwon, Jin-Young;Oh, Guang-Jin;Kim, Kab-Ki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.76-78
    • /
    • 2011
  • In this paper, 0.8 GHz and 1.8 GHz dual-band antenna was designed for global system for mobile communications (GSM) and the Long Term Evolution (LTE) The proposed antenna was made using CST Microwave Studio 2009. My script antenna's substrate is Taconic TLY-5 and dielectric constant is 2,2 and has 1.0mm thickness with a compact design of the proposed antenna, Thus it shows that this proposed antenna can be used in Wireless Communication System.

  • PDF

Design, Fabrication and Measurement of a Compact, Frequency Reconfigurable, Modified T-shape Planar Antenna for Portable Applications

  • Iqbal, Amjad;Ullah, Sadiq;Naeem, Umair;Basir, Abdul;Ali, Usman
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1611-1618
    • /
    • 2017
  • This paper presents a compact reconfigurable printed monopole antenna, operating in three different frequency bands (2.45 GHz, 3 GHz and 5.2 GHz), depending upon the state of the lumped element switch. The proposed multiband reconfigurable antenna is designed and fabricated on a 1.6 mm thicker FR-4 substrate having a relative permittivity of 4.4. When the switch is turned ON, the antenna operates in a dual band frequency mode, i.e. WiFi at 2.45 GHz (2.06-3.14 GHz) and WLAN at 5.4 GHz (5.11-5.66 GHz). When the switch is turned OFF, it operates only at 3 GHz (2.44-3.66 GHz). The antenna radiates omni-directionally in these bands with an adequate, bandwidth (>10 %), efficiency (>90 %), gain (>1.2 dB), directivity (>1.7 dBi) and VSWR (<2). The fabricated antenna is tested in the laboratory to validate the simulated results. The antenna, due to its reasonably compact size ($39{\times}37mm^2$), can be used in portable devices such as laptops and iPads.

Compact Mobile Quad-Band Slot Antenna Design for GPS L1, WiMAX, and WLAN Applications

  • Piao, Haiyan;Jin, Yunnan;Tak, Jinpil;Choi, Jaehoon
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.2
    • /
    • pp.57-64
    • /
    • 2017
  • In this paper, an asymmetric compact multiband slot antenna is proposed for global positioning system (GPS), worldwide interoperability for microwave access (WiMAX), and wireless area network (WLAN) applications. The top plane, a ground is composed of a rectangular slot with a trapezoidal-like stub, an inverted U-shaped slot at the right side of the rectangular slot, an inverted L-shaped slot at the left side of the rectangular slot, and three stubs. The proposed antenna is fed by an asymmetric cross-parasitic strip on the bottom plane. By properly designing the slots and stubs, four resonant frequency bands are achieved with -10 dB reflection coefficient bandwidths of 50 MHz, 400 MHz, 390 MHz, and 830 MHz in the 1.57 GHz GPS band, 2.4 GHz WLAN band, 3.5 GHz WiMAX band, and 5.5 GHz WLAN bands, respectively. The antenna has a total compact size of $13mm{\times}32mm{\times}0.8mm$. Simulated and measured results indicate that the proposed antenna has sufficient bandwidth and good radiation performance in each band.

Design of the Multi-band Monopole Antenna using a Parasitic branch (기생 가지를 이용한 다중대역 모노폴 안테나 설계)

  • Choi, Jong-Kyun;Kim, Che-Young;Park, Jeung-Keun;Choi, Won-Jun
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.155-156
    • /
    • 2007
  • A wideband monopole antenna using a parasitic branch is proposed for allowing operations at multiple frequency bands specified in GSM($824{\sim}894MHz$), PCS($1750{\sim}1870MHz$), WiBro($2.3{\sim}2.4GHz$), WLAN/ISM ($2.4{\sim}2.48GHz$) and SDMB($2.605{\sim}2.655GHz$). We have used two branch monopoles and the one parasitic branch. Prototype of the multiband antenna have been successfully implemented and good radiation characteristics the operating frequency bands have been obtained. The effect of a parasitic branch was also studied.

  • PDF

A Triangular Microstrip Antenna with T-Shaped Slits for Tunable Dual-Band Applications (T자 모양 슬릿 구조를 이용한 이중 대역 공진 주파수 변환 삼각형 마이크로스트립 안테나)

  • Lee, Keon-Myung;Sung, Young-Je;Kim, Young-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.2
    • /
    • pp.141-146
    • /
    • 2009
  • A triangular microstrip antenna with T-shaped slits is proposed for tunable dual-band applications. The proposed antenna is designed using chip capacitors as a prototype. From this result the capacitor can be replaced to a varactor diode to control capacitance value. Since the input impedance of the antenna can be varied with the value of the chip capacitors on the T-shaped slits, the resonant frequency may be changed. The return losses are better than 10 dB at the lower band of $0.78{\sim}1.21$ GHz and 20 dB at the upper band of $1.97{\sim}2.17$ GHz, respectively. This antenna has the bandwidth of about 10 MHz and 50 MHz at each band. The peak gains of the antenna yield 0 dBi at the lower band and 3 dBi at the upper band, respectively. Details of the antenna design are described, and its performances are presented and analyzed.