• Title/Summary/Keyword: multi-variable functions

Search Result 77, Processing Time 0.029 seconds

Analysis of multi-center bladder cancer survival data using variable-selection method of multi-level frailty models (다수준 프레일티모형 변수선택법을 이용한 다기관 방광암 생존자료분석)

  • Kim, Bohyeon;Ha, Il Do;Lee, Donghwan
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.2
    • /
    • pp.499-510
    • /
    • 2016
  • It is very important to select relevant variables in regression models for survival analysis. In this paper, we introduce a penalized variable-selection procedure in multi-level frailty models based on the "frailtyHL" R package (Ha et al., 2012). Here, the estimation procedure of models is based on the penalized hierarchical likelihood, and three penalty functions (LASSO, SCAD and HL) are considered. The proposed methods are illustrated with multi-country/multi-center bladder cancer survival data from the EORTC in Belgium. We compare the results of three variable-selection methods and discuss their advantages and disadvantages. In particular, the results of data analysis showed that the SCAD and HL methods select well important variables than in the LASSO method.

A Performance Comparison of the Partial Linearization Algorithm for the Multi-Mode Variable Demand Traffic Assignment Problem (다수단 가변수요 통행배정문제를 위한 부분선형화 알고리즘의 성능비교)

  • Park, Taehyung;Lee, Sangkeon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.39 no.4
    • /
    • pp.253-259
    • /
    • 2013
  • Investment scenarios in the transportation network design problem usually contain installation or expansion of multi-mode transportation links. When one applies the mode choice analysis and traffic assignment sequentially for each investment scenario, it is possible that the travel impedance used in the mode choice analysis is different from the user equilibrium cost of the traffic assignment step. Therefore, to estimate the travel impedance and mode choice accurately, one needs to develop a combined model for the mode choice and traffic assignment. In this paper, we derive the inverse demand and the excess demand functions for the multi-mode multinomial logit mode choice function and develop a combined model for the multi-mode variable demand traffic assignment problem. Using data from the regional O/D and network data provided by the KTDB, we compared the performance of the partial linearization algorithm with the Frank-Wolfe algorithm applied to the excess demand model and with the sequential heuristic procedures.

STABILITY OF THE MULTI-JENSEN EQUATION

  • Prager, Wolfgang;Schwaiger, Jens
    • Bulletin of the Korean Mathematical Society
    • /
    • v.45 no.1
    • /
    • pp.133-142
    • /
    • 2008
  • Given an $m{\in}\mathbb{N}$ and two vector spaces V and W, a function f : $V^m{\rightarrow}W$ is called multi-Jensen if it satisfies Jensen's equation in each variable separately. In this paper we unify these m Jensen equations to obtain a single functional equation for f and prove its stability in the sense of Hyers-Ulam, using the so-called direct method.

Syntheses and realization of Quaternary Galois Field Sum-Of-Product(QGFSOP) expressed 1-variable functions Permutational Literals (치환리터럴에 의한 Quaternary Galois Field Sum-Of-Product(QGFSOP)형 1-변수 함수의 합성과 실현)

  • Park, Dong-Young;Kim, Baek-Ki;Seong, Hyeun-Kyeong
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.5
    • /
    • pp.710-717
    • /
    • 2010
  • Even though there are 256 possible 1-qudit(1-variable quantum digit) functions in quaternary logic, the most useful functions are 4!=24 ones capable of representing in QGFSOP expressions by possible permuting of 0,1,2, and 3. In this paper, we propose a permutational literal(PL) representation and a QPL(Quaternary PL) gate which use the operands of a multiplicand A and an augend D in $Ax^C$+D(GF4) operation as a control variable of multi-cascaded PLs. And we also present new PL synthesis algorithms to synthesize QGFSOP expressed 24 (1-qudit) functions by applying three PL operators as ab(mutual permutation), + D(addition), and XA (multiplication). Finally architectures, circuits, and a CMOS implementation to realize proposed PL synthesis algorithms for $Ax^C$+D(GF4) functions are presented.

Optimum Controller Design of a Water Cooler for Machine Tools Based on the State Space Model (상태공간 모델링에 의한 공작기계용 수냉각기의 최적제어기 설계)

  • Jeong, Seok-Kwon;Kim, Sang-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.12
    • /
    • pp.782-790
    • /
    • 2011
  • Typical temperature control methods of a cooler for machine tools are hot-gas bypass and compressor variable speed control. The hot-gas bypass system has been widely used to control the cooler temperature in many general industrial fields. On the contrary, the compressor variable speed control is focused on special fields such as aerospace and high precision machine tools which need high precision control. The variable speed control system usually has two control variables such as target temperature and superheat. In other words, the variable speed control system is basically multi-input multi-output(MIMO) system. In spite of MIMO system, the proportional integral derivative(PID) feedback control methodology that based on single-input single-output (SISO) system is generally used for designing the variable speed control system. Therefore, it is inevitable to describe transfer functions for dynamic behaviors of every controlled variables and decide the PID gains with tremendous iteration process. Moreover, the designed PID gains do not provide optimum system performances. To solve these problems, high performance controller design method based on a state space model is suggested in this paper. An optimum controller is designed to minimize both control errors and energy inputs. This method was more simple to describe dynamic behaviors and easier to design the cooler controller which is MIMO system.

Realization of Multi-Channel Active Filters by Using Operational Amplifiers (연산 증폭기를 사용한 다중 챈넬능동휠타의 구현)

  • Chung Duk Kim
    • 전기의세계
    • /
    • v.24 no.4
    • /
    • pp.80-82
    • /
    • 1975
  • This paper presents a synthesis procedure of multi-channel active filters, which realizes an arbitrary N*N matrix of real rational functions in the complex variable s as a voltage transfer matrix. The resultant network reveals a transformerless grounded active RC(2N+1)-terminal network. The active network is consisted of six 2N-port RC networks with 2N single-ended operational amplifiers.

  • PDF

Application of Genetic Algorithm-Based Relay Search Method for Structure Design - Strengthening Problems (교대형 유전자 알고리즘을 이용한 보강설계의 최적화)

  • 정승인;김남희;장승필
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.223-232
    • /
    • 2001
  • This paper describes Genetic Algorithm-Based Relay Search Method, RS-GA, which is developed in this study to search the multiple design variables in the design space. The RS-GA based on Simple-GA consists of some functions to search many variables from some wide variable space. It repeats a Simple-GA, that is the convergence process of the Simple-GA, which makes many time reiteration itself. From the results of the numerical studies, it was actually found that RS-GA can search all peak-variable from the 2D functions including 5 peaks. Finally, RS-GA applied for design-strengthening problems in composite plate girder bridges using the external prestressing technique is also verified.

  • PDF

Flexural free vibration of cantilevered structures of variable stiffness and mass

  • Li, Q.S.
    • Structural Engineering and Mechanics
    • /
    • v.8 no.3
    • /
    • pp.243-256
    • /
    • 1999
  • Using appropriate transformations, the differential equation for flexural free vibration of a cantilever bar with variably distributed mass and stiffness is reduced to a Bessel's equation or an ordinary differential equation with constant coefficients by selecting suitable expressions, such as power functions and exponential functions, for the distributions of stiffness and mass. The general solutions for flexural free vibration of one-step bar with variable cross-section are derived and used to obtain the frequency equation of multi-step cantilever bars. The new exact approach is presented which combines the transfer matrix method and closed form solutions of one step bars. Two numerical examples demonstrate that the calculated natural frequencies and mode shapes of a 27-storey building and a television transmission tower are in good agreement with the corresponding experimental data. It is also shown through the numerical examples that the selected expressions are suitable for describing the distributions of stiffness and mass of typical tall buildings and high-rise structures.

Multi-objective Optimization of Vehicle Routing with Resource Repositioning (자원 재배치를 위한 차량 경로계획의 다목적 최적화)

  • Kang, Jae-Goo;Yim, Dong-Soon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.2
    • /
    • pp.36-42
    • /
    • 2021
  • This paper deals with a vehicle routing problem with resource repositioning (VRPRR) which is a variation of well-known vehicle routing problem with pickup and delivery (VRPPD). VRPRR in which static repositioning of public bikes is a representative case, can be defined as a multi-objective optimization problem aiming at minimizing both transportation cost and the amount of unmet demand. To obtain Pareto sets for the problem, famous multi-objective optimization algorithms such as Strength Pareto Evolutionary Algorithm 2 (SPEA2) can be applied. In addition, a linear combination of two objective functions with weights can be exploited to generate Pareto sets. By varying weight values in the combined single objective function, a set of solutions is created. Experiments accomplished with a standard benchmark problem sets show that Variable Neighborhood Search (VNS) applied to solve a number of single objective function outperforms SPEA2. All generated solutions from SPEA2 are completely dominated by a set of VNS solutions. It seems that local optimization technique inherent in VNS makes it possible to generate near optimal solutions for the single objective function. Also, it shows that trade-off between the number of solutions in Pareto set and the computation time should be considered to obtain good solutions effectively in case of linearly combined single objective function.

Fuzzy-Neural Networks by Means of Division of Fuzzy Input Space with Multi-input Variables (다변수 퍼지 입력 공간 분할에 의한 퍼지-뉴럴 네트워크)

  • Park, Ho-Sung;Yoon, Ki-Chan;Oh, Sung-Kwun;Ahn, Tae-Chon
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.824-826
    • /
    • 1999
  • In this paper, we design an Fuzzy-Neural Networks(FNN) by means of divisions of fuzzy input space with multi-input variables. Fuzzy input space of Yamakawa's FNN is divided by each separated input variable, but that of the proposed FNN is divided by mutually combined input variables. The membership functions of the proposed FNN use both triangular and gaussian membership types. The parameters such as apexes of membership functions, learning rates, momentum coefficients, weighting value, and slope are adjusted using genetic algorithms. Also, an aggregate objective function(performance index) with weighting value is utilized to achieve a sound balance between approximation and generalization abilities of the model. To evaluate the performance of the proposed model, we use the data of sewage treatment process.

  • PDF