• Title/Summary/Keyword: multi-turbo codes

Search Result 24, Processing Time 0.027 seconds

Low Complexity Decoder for Space-Time Turbo Codes

  • Lee Chang-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.4C
    • /
    • pp.303-309
    • /
    • 2006
  • By combining the space-time diversity technique and iterative turbo codes, space-time turbo codes(STTCS) are able to provide powerful error correction capability. However, the multi-path transmission and iterative decoding structure of STTCS make the decoder very complex. In this paper, we propose a low complexity decoder, which can be used to decode STTCS as well as general iterative codes such as turbo codes. The efficient implementation of the backward recursion and the log-likelihood ratio(LLR) update in the proposed algorithm improves the computational efficiency. In addition, if we approximate the calculation of the joint LLR by using the approximate ratio(AR) algorithm, the computational complexity can be reduced even further. A complexity analysis and computer simulations over the Rayleigh fading channel show that the proposed algorithm necessitates less than 40% of the additions required by the conventional Max-Log-MAP algorithm, while providing the same overall performance.

Estimation of soft decision channel gain for coded MIMO system (부호화된 MIMO 시스템에서 연판정 채널 이득값의 계산)

  • Kim, Young-Min;Shang, Ping Ping;Kim, Soo-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.6A
    • /
    • pp.577-586
    • /
    • 2011
  • Modem digital communication systems are required to use forward error correction (FEC) codes to combat inevitable channel impairment. Turbo codes or low density parity check (LDPC) codes, using iterative decoding with soft decision detection (SDD) information, are the most common examples. The excellent performance of these codes should be conditioned on accurate estimation of soft decision detection information. In order to use FEC codes with iterative decoding for Multi-Input Multi-Output (MIMO) system, reliable soft decision channel gain should be provided. In this paper, we investigate efficient SDD methods for turbo-coded MIMO system, and derive the corresponding formulas of SDD for various MIMO detection schemes. We present simulation results of the derived SDD schemes for turbo-coded MIMO systems, and show that the presented results almost approximate to maximum likelihood detection performance with much less computational load.

Turbo Decoding for Precoded Systems over Multipath Fading Channels

  • Zhang, Qing;Le-Ngoc, THo
    • Journal of Communications and Networks
    • /
    • v.6 no.3
    • /
    • pp.203-208
    • /
    • 2004
  • A combined precoding and turbo decoding strategy for multi-path frequency-selective fading channels is presented. The precoder and multi-path fading channel are jointly modeled as a finite-state probabilistic channel to provide the multi-stage turbo decoder with its statistics information. Both a priori and a posteriori probabilities are used in the metric computation to improve the system performance. Structures of the combined turbo-encoder, interleaver, and precoder in the transmitter and two-stage turbo decoder in the receiver are described. Performance of the proposed scheme in fixed, Rician and Rayleigh multi-path fading channels are evaluated by simulation. The results indicate that the combined precoding and two-stage turbo decoding strategy provides a considerable performance improvement while maintaining the same inner structure of a conventional turbo decoder.

A Study on Visible Light Communication with Turbo Coded OFDM for Intelligent Transport Systems (지능형 교통 시스템을 위한 Turbo Code OFDM 적용한 가시광 통신 시스템에 관한 연구)

  • Koo, Sung-Wan;Kim, Jin-Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.2
    • /
    • pp.60-67
    • /
    • 2010
  • In the ubiquitous age, applications of wireless personal area network (WPAN) technology using LEDs are in progress. However, visible light communications (VLC) using the LEDs have weakness which deteriorate performance of communication because of multi-path fading that occurs propagation delay by interior walls or other things in indoor environments. In this paper, orthogonal frequency division multiplexing (OFDM) scheme is adapted to decrease multi-path fading and multi-path dispersion and to provide high speed data transmission. Besides, to reduce information losses caused by optical noise (incandescent lamps, fluorescent lamps, sunbeam etc.) also proposed channel coding using turbo codes. The encoding and decoding of the proposed system is described, and simulation results are analyzed. We can know that performance of proposed system is increased about 4 [dB] through the simulation results. Also, when the system take doppler effect, the system performance worsened.

Performance analysis of turbo codes based on underwater experimental data (수중 실험 데이터 기반 터보 부호 성능 분석)

  • Sung, Ha-Hyun;Jung, Ji-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.1
    • /
    • pp.45-49
    • /
    • 2016
  • The performance of underwater acoustic communication systems is sensitive to inter-symbol interference caused by delay spread developed from multipath signal propagation. The multipath nature of underwater channels causes signal distortion and error floor. In order to improve the performance, it is necessary to employ an iterative coding scheme. Of the various iterative coding schemes, turbo code and convolutional code based on the BCJR algorithm have recently dominated this application. In this study, the performance of iterative codes based on turbo equalizers with equivalent coding rates and similar code word lengths were analyzed. Underwater acoustic communication system experiments using these two coding techniques were conducted on Kyeong-chun Lake in Munkyeong City. The distance between the transmitter and receiver was 400 m, and the data transfer rate was 1 Kbps. The experimental results revealed that the performance of turbo codes is better for channeling than that of convolutional codes that use a BCJR decoding algorithm.

Performance of Turbo Code Using Multi-Stage Interleaver in W-CDMA System (MIL인터리버를 이용한 W-CDMA시스템에서 터보부호의 성능)

  • Kim, Kyung-Sun;Ahn, Do-Rang;Lee, Dong-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2000.11d
    • /
    • pp.718-720
    • /
    • 2000
  • Turbo Code is one of the most useful and powerful channel coding technique. It is adopted in radio transmission of IMT-2000, both CDMA2000 and W-CDMA system. The performance of this code depends on many parameters such as encoder memory size, free distance of codewords, interleaver size, number of decoding iteration, and so on. This paper describes a Multi-Stage Interleaver which is used in Turbo Codes for W-CDMA channel coding. We compare the performance of a Multi-Stage Interleaver with that of Mother Interleaver. The simulation results show that Multi-Stage Interleaver performs better than Mother Interleaver in bit error rate from $10^{-3}$ to $10^{-6}$.

  • PDF

Approaching Near-Capacity on a Multi-Antenna Channel using Successive Decoding and Interference Cancellation Receivers

  • Sellathurai, Mathini;Guinand, Paul;Lodge, John
    • Journal of Communications and Networks
    • /
    • v.5 no.2
    • /
    • pp.116-123
    • /
    • 2003
  • In this paper, we address the problem of designing multirate codes for a multiple-input and multiple-output (MIMO) system by restricting the receiver to be a successive decoding and interference cancellation type, when each of the antennas is encoded independently. Furthermore, it is assumed that the receiver knows the instantaneous fading channel states but the transmitter does not have access to them. It is well known that, in theory, minimummean- square error (MMSE) based successive decoding of multiple access (in multi-user communications) and MIMO channels achieves the total channel capacity. However, for this scheme to perform optimally, the optimal rates of each antenna (per-antenna rates) must be known at the transmitter. We show that the optimal per-antenna rates at the transmitter can be estimated using only the statistical characteristics of the MIMO channel in time-varying Rayleigh MIMO channel environments. Based on the results, multirate codes are designed using punctured turbo codes for a horizontal codedMIMOsystem. Simulation results show performances within about one to two dBs of MIMO channel capacity.

Performance Evaluation of Turbo Codes by Soft Detection Metrics of STBC over an IEEE 802.16e Link (IEEE 802.16e 링크에서 시공간 블록 부호의 연판정 검출에 따른 터보 부호의 성능평가)

  • Kim, Young-Min;Kim, Soo-Young;Lim, Kwang-Jae
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.2
    • /
    • pp.1-8
    • /
    • 2010
  • Multi antenna techniques using space-time codes can achieve diversity gains in a multi-path environment without additional bandwidth requirement. Most of the 4G candidate standards including the IEEE 802.16e adopt multi-input multi-output (MIMO) schemes to achieve either high throughput performance or diversity gains. In these 4G candidate standards, turbo codes using an iterative decoder with soft input soft output are used to overcome serious channel fading. For this reason, the estimated signal values from MIMO detectors should be soft decision detection values. In this paper, we propose efficient methods to estimate soft decision detection values for various space time coding schemes, and provide the simulation results of turbo coded space time coding scheme over an IEEE 802.16e link.

Soft Detection using QR Decomposition for Coded MIMO System (부호화된 MIMO 시스템에서 QR 분해를 이용한 효율적인 연판정 검출)

  • Zhang, Meixiang;Kim, Soo-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.7A
    • /
    • pp.535-544
    • /
    • 2012
  • Multi-Input Multi-Output (MIMO) transmission is now considered as one of essential techniques enabling high rate data transmissions in wireless communication systems. In addition, severe channel impairments in wireless systems should be compensated by using highly efficient forward error correction (FEC) codes. Turbo codes or low density parity check (LDPC) codes, using iterative decoding with soft decision detection information (SDDI), are the most common examples. The excellent performance of these codes should be conditioned on accurate estimation of SDDI from the MIMO detection process. In this paper, we propose a soft MIMO detection scheme using QR decomposition of channel matrices as an efficient means to provide accurate SDDI to the iterative decoder. The proposed method employed a two sequential soft MIMO detection process in order to reduce computational complexity. Compared to the soft ZF method calculating the direct inverse of the channel matrix, the complexity of the proposed method can be further reduced as the number of antennas is increased, without any performance degradation.

Performance Evaluation of MIMO system by phase difference in underwater channel (수중통신환경에서 위상 차이에 따른 MIMO 시스템 성능 평가)

  • Park, Gun-yeol;Park, Tae-doo;Jung, Ji-won;Park, Sun;Choi, Myung Su;Lee, Sung Ro
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.402-404
    • /
    • 2013
  • The wireless communication channel different speed by depth of water or salt and it is influenced by multi-path according underwater. In the paper, MIMO(Multi-input-Multi-Output) system used turbo Equalizer combining Equalizer with Turbo codes for data rates by multi-path channel. we proposed and simulated that the Decision-Directed method used for phase offset. The simulation of proposed method show that the bit-error rate performance can be severely affected by phase errors.

  • PDF