• Title/Summary/Keyword: multi-swarm approach

Search Result 34, Processing Time 0.019 seconds

EP Based PSO Method for Solving Multi Area Unit Commitment Problem with Import and Export Constraints

  • Venkatesan, K.;Selvakumar, G.;Rajan, C. Christober Asir
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.415-422
    • /
    • 2014
  • This paper presents a new approach to solve the multi area unit commitment problem (MAUCP) using an evolutionary programming based particle swarm optimization (EPPSO) method. The objective of this paper is to determine the optimal or near optimal commitment schedule for generating units located in multiple areas that are interconnected via tie lines. The evolutionary programming based particle swarm optimization method is used to solve multi area unit commitment problem, allocated generation for each area and find the operating cost of generation for each hour. Joint operation of generation resources can result in significant operational cost savings. Power transfer between the areas through the tie lines depends upon the operating cost of generation at each hour and tie line transfer limits. Case study of four areas with different load pattern each containing 7 units (NTPS) and 26 units connected via tie lines have been taken for analysis. Numerical results showed comparing the operating cost using evolutionary programming-based particle swarm optimization method with conventional dynamic programming (DP), evolutionary programming (EP), and particle swarm optimization (PSO) method. Experimental results show that the application of this evolutionary programming based particle swarm optimization method has the potential to solve multi area unit commitment problem with lesser computation time.

Damage identification in laminated composite plates using a new multi-step approach

  • Fallah, Narges;Vaez, Seyed Rohollah Hoseini;Fasihi, Hossein
    • Steel and Composite Structures
    • /
    • v.29 no.1
    • /
    • pp.139-149
    • /
    • 2018
  • In this paper a new multi-step damage detection approach is provided. In the first step, condensed modal residual vector based indicator (CMRVBI) has been proposed to locate the suspected damaged elements of structures that have rotational degrees of freedom (DOFs). The CMRVBI is a new indicator that uses only translational DOFs of the structures to localize damaged elements. In the next step, salp swarm algorithm is applied to quantify damage severity of the suspected damaged elements. In order to assess the performance of the proposed approach, a numerical example including a three-layer square laminated composite plate is studied. The numerical results demonstrated that the proposed CMRVBI is effective for locating damage, regardless of the effect of noise. The efficiency of proposed approach is also compared during both steps. The results demonstrate that in noisy condition, the damage identification approach is capable for the studied structure.

Optimization Design for Dynamic Characters of Electromagnetic Apparatus Based on Niche Sorting Multi-objective Particle Swarm Algorithm

  • Xu, Le;You, Jiaxin;Yu, Haidan;Liang, Huimin
    • Journal of Magnetics
    • /
    • v.21 no.4
    • /
    • pp.660-665
    • /
    • 2016
  • The electromagnetic apparatus plays an important role in high power electrical systems. It is of great importance to provide an effective approach for the optimization of the high power electromagnetic apparatus. However, premature convergence and few Pareto solution set of the optimization for electromagnetic apparatus always happen. This paper proposed a modified multi-objective particle swarm optimization algorithm based on the niche sorting strategy. Applying to the modified algorithm, this paper guarantee the better Pareto optimal front with an enhanced distribution. Aiming at shortcomings in the closing bounce and slow breaking velocity of electromagnetic apparatus, the multi-objective optimization model was established on the basis of the traditional optimization. Besides, by means of the improved multi-objective particle swarm optimization algorithm, this paper processed the model and obtained a series of optimized parameters (decision variables). Compared with other different classical algorithms, the modified algorithm has a satisfactory performance in the multi-objective optimization problems in the electromagnetic apparatus.

A response surface modelling approach for multi-objective optimization of composite plates

  • Kalita, Kanak;Dey, Partha;Joshi, Milan;Haldar, Salil
    • Steel and Composite Structures
    • /
    • v.32 no.4
    • /
    • pp.455-466
    • /
    • 2019
  • Despite the rapid advancement in computing resources, many real-life design and optimization problems in structural engineering involve huge computation costs. To counter such challenges, approximate models are often used as surrogates for the highly accurate but time intensive finite element models. In this paper, surrogates for first-order shear deformation based finite element models are built using a polynomial regression approach. Using statistical techniques like Box-Cox transformation and ANOVA, the effectiveness of the surrogates is enhanced. The accuracy of the surrogate models is evaluated using statistical metrics like $R^2$, $R^2{_{adj}}$, $R^2{_{pred}}$ and $Q^2{_{F3}}$. By combining these surrogates with nature-inspired multi-criteria decision-making algorithms, namely multi-objective genetic algorithm (MOGA) and multi-objective particle swarm optimization (MOPSO), the optimal combination of various design variables to simultaneously maximize fundamental frequency and frequency separation is predicted. It is seen that the proposed approach is simple, effective and good at inexpensively producing a host of optimal solutions.

Simple Pyramid RAM-Based Neural Network Architecture for Localization of Swarm Robots

  • Nurmaini, Siti;Zarkasi, Ahmad
    • Journal of Information Processing Systems
    • /
    • v.11 no.3
    • /
    • pp.370-388
    • /
    • 2015
  • The localization of multi-agents, such as people, animals, or robots, is a requirement to accomplish several tasks. Especially in the case of multi-robotic applications, localization is the process for determining the positions of robots and targets in an unknown environment. Many sensors like GPS, lasers, and cameras are utilized in the localization process. However, these sensors produce a large amount of computational resources to process complex algorithms, because the process requires environmental mapping. Currently, combination multi-robots or swarm robots and sensor networks, as mobile sensor nodes have been widely available in indoor and outdoor environments. They allow for a type of efficient global localization that demands a relatively low amount of computational resources and for the independence of specific environmental features. However, the inherent instability in the wireless signal does not allow for it to be directly used for very accurate position estimations and making difficulty associated with conducting the localization processes of swarm robotics system. Furthermore, these swarm systems are usually highly decentralized, which makes it hard to synthesize and access global maps, it can be decrease its flexibility. In this paper, a simple pyramid RAM-based Neural Network architecture is proposed to improve the localization process of mobile sensor nodes in indoor environments. Our approach uses the capabilities of learning and generalization to reduce the effect of incorrect information and increases the accuracy of the agent's position. The results show that by using simple pyramid RAM-base Neural Network approach, produces low computational resources, a fast response for processing every changing in environmental situation and mobile sensor nodes have the ability to finish several tasks especially in localization processes in real time.

An Efficient PSO Algorithm for Finding Pareto-Frontier in Multi-Objective Job Shop Scheduling Problems

  • Wisittipanich, Warisa;Kachitvichyanukul, Voratas
    • Industrial Engineering and Management Systems
    • /
    • v.12 no.2
    • /
    • pp.151-160
    • /
    • 2013
  • In the past decades, several algorithms based on evolutionary approaches have been proposed for solving job shop scheduling problems (JSP), which is well-known as one of the most difficult combinatorial optimization problems. Most of them have concentrated on finding optimal solutions of a single objective, i.e., makespan, or total weighted tardiness. However, real-world scheduling problems generally involve multiple objectives which must be considered simultaneously. This paper proposes an efficient particle swarm optimization based approach to find a Pareto front for multi-objective JSP. The objective is to simultaneously minimize makespan and total tardiness of jobs. The proposed algorithm employs an Elite group to store the updated non-dominated solutions found by the whole swarm and utilizes those solutions as the guidance for particle movement. A single swarm with a mixture of four groups of particles with different movement strategies is adopted to search for Pareto solutions. The performance of the proposed method is evaluated on a set of benchmark problems and compared with the results from the existing algorithms. The experimental results demonstrate that the proposed algorithm is capable of providing a set of diverse and high-quality non-dominated solutions.

Self-Organization for Multi-Agent Groups

  • Kim, Dong-Hun
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.3
    • /
    • pp.333-342
    • /
    • 2004
  • This paper presents a framework for the self-organization of swarm systems based on coupled nonlinear oscillators (CNOs). In this scheme, multiple agents in a swarm self-organize to flock and arrange themselves as a group using CNOs, which are able to keep a certain distance by the attractive and repulsive forces among different agents. A theoretical approach of flocking behavior by CNOs and a design guideline of CNO parameters are proposed. Finally, the formation scenario for cooperative multi-agent groups is investigated to demonstrate group behaviors such as aggregation, migration, homing and so on. The task for each group in this scenario is to perform a series of processes such as gathering into a whole group or splitting into two groups, and then to return to the base while avoiding collision with agents in different groups and maintaining the formation of each group.

Environment Adaptation using Evolutional Interactivity in a Swarm of Robots (진화적 상호작용을 이용한 군집로봇의 환경적응)

  • Moon, Woo-Sung;Jang, Jin-Won;Baek, Kwang-Ryul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.3
    • /
    • pp.227-232
    • /
    • 2010
  • In this paper we consider the multi-robot system that collects target objects spread in an unexplored environment. The robots cooperate each other to improve the capability and the efficiency. The robots attract or intimidate each other as behaviors of bacterial swarms or particles with electrical moments. The interactions would increase the working efficiency in some environments but it would decrease the efficiency in some other environments. Therefore, the system needs to adapt to the working environment by adjusting the strengths of the interactions. The strengths of the interactions are expressed as sets of gene codes that mean the weights of each kind of attracting or intimidating vectors. The proposed system adjusts the gene codes using evolutional strategy. The proposed approach has been validated by computer simulation. The results of this paper show that our inter-swarm interacting strategy and optimizing algorithm improves the working efficiency, adaptively to the characteristics of environments.

Multi-stage approach for structural damage identification using particle swarm optimization

  • Tang, H.;Zhang, W.;Xie, L.;Xue, S.
    • Smart Structures and Systems
    • /
    • v.11 no.1
    • /
    • pp.69-86
    • /
    • 2013
  • An efficient methodology using static test data and changes in natural frequencies is proposed to identify the damages in structural systems. The methodology consists of two main stages. In the first stage, the Damage Signal Match (DSM) technique is employed to quickly identify the most potentially damaged elements so as to reduce the number of the solution space (solution parameters). In the second stage, a particle swarm optimization (PSO) approach is presented to accurately determine the actual damage extents using the first stage results. One numerical case study by using a planar truss and one experimental case study by using a full-scale steel truss structure are used to verify the proposed hybrid method. The identification results show that the proposed methodology can identify the location and severity of damage with a reasonable level of accuracy, even when practical considerations limit the number of measurements to only a few for a complex structure.

A modified particle swarm approach for multi-objective optimization of laminated composite structures

  • Sepehri, A.;Daneshmand, F.;Jafarpur, K.
    • Structural Engineering and Mechanics
    • /
    • v.42 no.3
    • /
    • pp.335-352
    • /
    • 2012
  • Particle Swarm Optimization (PSO) is a stochastic population based optimization algorithm which has attracted attentions of many researchers. This method has great potentials to be applied to many optimization problems. Despite its robustness the standard version of PSO has some drawbacks that may reduce its performance in optimization of complex structures such as laminated composites. In this paper by suggesting a new variation scheme for acceleration parameters and inertial weight factors of PSO a novel optimization algorithm is developed to enhance the basic version's performance in optimization of laminated composite structures. To verify the performance of the new proposed method, it is applied in two multi-objective design optimization problems of laminated cylindrical. The numerical results from the proposed method are compared with those from two other conventional versions of PSO-based algorithms. The convergancy of the new algorithms is also compared with the other two versions. The results reveal that the new modifications inthe basic forms of particle swarm optimization method can increase its convergence speed and evade it from local optima traps. It is shown that the parameter variation scheme as presented in this paper is successful and can evenfind more preferable optimum results in design of laminated composite structures.