• Title/Summary/Keyword: multi-scale fusion

Search Result 74, Processing Time 0.021 seconds

Change in Spatial Dispersion of Daphnia magna(Cladocera: Daphniidae) Populations Exposed to Organophosphorus Insecticide, Diazinon (유기인계 살충제 (다이아지논)에 대한 물벼룩, Daphnia magna (Cladocera: Daphniidae) 개체군의 공간분산 변이)

  • Lee, Sang-Hee;Ji, Chang-Woo;Chon, Tae-Soo
    • Environmental Analysis Health and Toxicology
    • /
    • v.24 no.3
    • /
    • pp.231-240
    • /
    • 2009
  • We explored collective behaviors of indicator species to elucidate the effect of the chemical stress. After the treatments of an insecticide, diazinon, at low concentrations (1.0 and 10.0 ${\mu}g/L$), spatial dispersion patterns of Daphnia magna were checked in a test chamber. The I-index was used to characterize the movement data before (0~1 h) and after (1~2 h) the treatments in laboratory conditions. The slopes of the frequency distribution of I-index in semi-log scale decreased significantly, and the test populations appeared to be more dispersed with a lower degree of aggregation after the treatments. The index was feasible in indicating decrease in the ability of the specimens to keep desirable distances with neighbor individuals under chemical stress and showed a possibility of monitoring presence of toxic chemicals in environment through group behavior measurement.

DA-Res2Net: a novel Densely connected residual Attention network for image semantic segmentation

  • Zhao, Xiaopin;Liu, Weibin;Xing, Weiwei;Wei, Xiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.11
    • /
    • pp.4426-4442
    • /
    • 2020
  • Since scene segmentation is becoming a hot topic in the field of autonomous driving and medical image analysis, researchers are actively trying new methods to improve segmentation accuracy. At present, the main issues in image semantic segmentation are intra-class inconsistency and inter-class indistinction. From our analysis, the lack of global information as well as macroscopic discrimination on the object are the two main reasons. In this paper, we propose a Densely connected residual Attention network (DA-Res2Net) which consists of a dense residual network and channel attention guidance module to deal with these problems and improve the accuracy of image segmentation. Specifically, in order to make the extracted features equipped with stronger multi-scale characteristics, a densely connected residual network is proposed as a feature extractor. Furthermore, to improve the representativeness of each channel feature, we design a Channel-Attention-Guide module to make the model focusing on the high-level semantic features and low-level location features simultaneously. Experimental results show that the method achieves significant performance on various datasets. Compared to other state-of-the-art methods, the proposed method reaches the mean IOU accuracy of 83.2% on PASCAL VOC 2012 and 79.7% on Cityscapes dataset, respectively.

Heterogeneous Face Recognition Using Texture feature descriptors (텍스처 기술자들을 이용한 이질적 얼굴 인식 시스템)

  • Bae, Han Byeol;Lee, Sangyoun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.3
    • /
    • pp.208-214
    • /
    • 2021
  • Recently, much of the intelligent security scenario and criminal investigation demands for matching photo and non-photo. Existing face recognition system can not sufficiently guarantee these needs. In this paper, we propose an algorithm to improve the performance of heterogeneous face recognition systems by reducing the different modality between sketches and photos of the same person. The proposed algorithm extracts each image's texture features through texture descriptors (gray level co-occurrence matrix, multiscale local binary pattern), and based on this, generates a transformation matrix through eigenfeature regularization and extraction techniques. The score value calculated between the vectors generated in this way finally recognizes the identity of the sketch image through the score normalization methods.

Characteristic and Measurement Technology of Inner Welding Residual Stresses in Thick Steel Structures (극후물재 용접부 내부잔류응력 측정기술 및 특성)

  • Park, Jeong-ung;An, Gyu-baek;Woo, Wanchuck
    • Journal of Welding and Joining
    • /
    • v.34 no.2
    • /
    • pp.16-21
    • /
    • 2016
  • Recent keywords of the heavy industries are large-scale structure and productivity. Especially, the sizes of the commercial vessels and the offshore structures have been gradually increased to deliver goods and explore or produce oil and natural gas in the Arctic. High heat input welding processes such as electro gas welding (EGW) have been widely used for welding thick steel plates with flux-cored arc welding (FCAW), especially in the shipbuilding industries. Because high heat input welding may cause the detrimental effects on the fracture toughness of the welded joint and the heat affected zone, it is essential to obtain the sufficient toughness of welded joint. There are well known that the fracture toughness like CTOD, CVN, and KIC were very important factors in order to secure the safety of the structures. Furthermore, the welding residual stress should be considered to estimate the unstable fracture in both EGW and FCAW. However, there are no references on the welding residual stress distribution of EGW and FCAW with thick steel plates. Therefore the welding residual stresses were very important elements to evaluate the safety of the welded structure. Based on the measurement results, the characteristics of residual stress distribution through thickness were compared between one-pass electron gas welding and multi-pass flux-cored arc welding. The longitudinal residual stress in the multi-pass flux-cored arc welding is tensile through all thicknesses in the welding fusion zone. Meanwhile, longitudinal residual stress of EGW is tensile on both surfaces and compressive at the inside of the plate. The magnitude of residual stresses by electron gas welding is lower than that by flux-cored arc welding.

A Fusion System of WS-BPEL and OWL-S for Semi-Automatic Composition of Web Services (반자동 웹 서비스 조합을 위한 WS-BPEL과 OWL-S의 융합 시스템)

  • Lee, Yong-Ju
    • The KIPS Transactions:PartD
    • /
    • v.15D no.4
    • /
    • pp.569-580
    • /
    • 2008
  • Web services are the current most promising technology for service oriented architecture(SOA) implementations. However, in spite of the large scale acceptance of web services, they have been relegated to internal integration projects, and the grand vision of virtual enterprises where partners can be integrated on demand is yet to be realized. The main reason is that the current standards of web services are not very suitable for the dynamic web service discovery and integration. In this paper, we present a novel SemanticBPEL solution that merges the benefit of WS-BPEL, with the advantage of OWL-S for building a semi-automatic web service composition system. In particular, this work proposes a multi-phase search method for solving dynamic discovery and integration problems of web services. The proposed method is compared with the existing keyword based retrieval method. These comparisons show that our approach outperforms the existing method.

Development of Hybrid Spatial Information Model for National Base Map (국가기본도용 Hybrid 공간정보 모델 개발)

  • Hwang, Jin Sang;Yun, Hong Sik;Yoo, Jae Yong;Cho, Seong Hwan;Kang, Seong Chan
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.4_1
    • /
    • pp.335-341
    • /
    • 2014
  • The main goal of this study is on developing a proper brand-new data of national base map and Data Based(DB) model for new information technology environments. To achieve this goal, we generated a brand-new Hybrid spatial information model which is specialized in the spatio-temporal map structure, the framework map for information integration, and the multiple-layered topology structure. The DB structure was designed to reflect the change of objections by adding a new dimension of 'time' in the spartial information, while the infrastructure was able to connect/converge with other information by giving the unique ID and multi-scale fusion map structure. Furthermore, the topology and multi visualization structure, including indoor and basement information, were designed to overcome limitations of expressing in 2 dimension map. The result from the performance test, which was based on the Hybrid spatial information model, confirms the possibility in advanced national base map and conducted DB model through implementing various information and spatiotemporal connections.

Design and Implementation of Big Data Analytics Framework for Disaster Risk Assessment (빅데이터 기반 재난 재해 위험도 분석 프레임워크 설계 및 구현)

  • Chai, Su-seong;Jang, Sun Yeon;Suh, Dongjun
    • Journal of Digital Contents Society
    • /
    • v.19 no.4
    • /
    • pp.771-777
    • /
    • 2018
  • This study proposes a big data based risk analysis framework to analyze more comprehensive disaster risk and vulnerability. We introduce a distributed and parallel framework that allows large volumes of data to be processed in a short time by using open-source disaster risk assessment tool. A performance analysis of the proposed system presents that it achieves a more faster processing time than that of the existing system and it will be possible to respond promptly to precise prediction and contribute to providing guideline to disaster countermeasures. Proposed system is able to support accurate risk prediction and mitigate severe damage, therefore will be crucial to giving decision makers or experts to prepare for emergency or disaster situation, and minimizing large scale damage to a region.

Image Quality Enhancement for Chest X-ray images (흉부 엑스레이 영상을 위한 화질 개선 알고리즘)

  • Park, So Yeon;Song, Byung Cheol
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.10
    • /
    • pp.97-107
    • /
    • 2015
  • The initial X-ray images obtained from a digital X-ray machine have a wide data range and uneven brightness level than normal images. In particular, in Chest X-ray images, it is necessary to improve naturally all of the parts such as ribs, spine, tissue, etc. These X-ray images can not be improved enough from conventional image quality enhancement algorithms because their characteristics are different from ordinary images'. This paper proposes to eliminate unnecessary background from an input image and expand the histogram range of the image. Then, we adjust the weight per frequency band of the image for improvement of contrast and sharpness. Finally, jointly taking the advantages of global contrast enhancement and local contrast enhancement methods we obtain an improved X-ray image suitable for effective diagnosis in comparison with the existing methods. Experimental results show quantitatively that the proposed algorithm provides better X-ray images in terms of the discrete entropy and saturation than the previous works.

Change of Lumbar Motion after Multi-Level Posterior Dynamic Stabilization with Bioflex System : 1 Year Follow Up

  • Park, Hun-Ho;Zhang, Ho-Yeol;Cho, Bo-Young;Park, Jeong-Yoon
    • Journal of Korean Neurosurgical Society
    • /
    • v.46 no.4
    • /
    • pp.285-291
    • /
    • 2009
  • Objective : This study examined the change of range of motion (ROM) at the segments within the dynamic posterior stabilization, segments above and below the system, the clinical course and analyzed the factors influencing them. Methods : This study included a consecutive 27 patients who underwent one-level to three-level dynamic stabilization with Bioflex system at our institute. All of these patients with degenerative disc disease underwent decompressive laminectomy with/without discectomy and dynamic stabilization with Bioflex system at the laminectomy level without fusion. Visual analogue scale (VAS) scores for back and leg pain, whole lumbar lordosis (from L1 to S1), ROMs from preoperative, immediate postoperative, 1.5, 3, 6, 12 months at whole lumbar (from L1 to S1), each instrumented levels, and one segment above and below this instrumentation were evaluated. Results : VAS scores for leg and back pain decreased significantly throughout the whole study period. Whole lumbar lordosis remained within preoperative range, ROM of whole lumbar and instrumented levels showed a significant decrease. ROM of one level upper and lower to the instrumentation increased, but statistically invalid. There were also 5 cases of complications related with the fixation system. Conclusion : Bioflex posterior dynamic stabilization system supports operation-induced unstable, destroyed segments and assists in physiological motion and stabilization at the instrumented level, decrease back and leg pain, maintain preoperative lumbar lordotic angle and reduce ROM of whole lumbar and instrumented segments. Prevention of adjacent segment degeneration and complication rates are something to be reconsidered through longer follow up period.

Feasibility Study of Robotics-based Patient Immobilization Device for Real-time Motion Compensation

  • Chung, Hyekyun;Cho, Seungryong;Cho, Byungchul
    • Progress in Medical Physics
    • /
    • v.27 no.3
    • /
    • pp.117-124
    • /
    • 2016
  • Intrafractional motion of patients, such as respiratory motion during radiation treatment, is an important issue in image-guided radiotherapy. The accuracy of the radiation treatment decreases as the motion range increases. We developed a control system for a robotic patient immobilization system that enables to reduce the range of tumor motion by compensating the tumor motion. Fusion technology, combining robotics and mechatronics, was developed and applied in this study. First, a small-sized prototype was established for use with an industrial miniature robot. The patient immobilization system consisted of an optical tracking system, a robotic couch, a robot controller, and a control program for managing the system components. A multi speed and position control mechanism with three degrees of freedom was designed. The parameters for operating the control system, such as the coordinate transformation parameters and calibration parameters, were measured and evaluated for a prototype device. After developing the control system using the prototype device, a feasibility test on a full-scale patient immobilization system was performed, using a large industrial robot and couch. The performances of both the prototype device and the realistic device were evaluated using a respiratory motion phantom, for several patterns of respiratory motion. For all patterns of motion, the root mean squared error of the corresponding detected motion trajectories were reduced by more than 40%. The proposed system improves the accuracy of the radiation dose delivered to the target and reduces the unwanted irradiation of normal tissue.