• Title/Summary/Keyword: multi-scale decomposition

Search Result 41, Processing Time 0.031 seconds

Multi-scale crack detection using decomposition and composition (해체와 구성을 이용한 다중 스케일 균열 검출)

  • Kim, Young Ro;Chung, Ji Yung
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.3
    • /
    • pp.13-20
    • /
    • 2013
  • In this paper, we propose a multi-scale crack detection method. This method uses decomposition, composition, and shape properties. It is based on morphology algorithm, crack features. We use a morphology operator which extracts patterns of crack. It segments cracks and background using opening and closing operations. Morphology based segmentation is better than existing integration methods using subtraction in detecting a crack it has small width. However, morphology methods using only one structure element could detect only fixed width crack. Thus, we use decomposition and composition methods. We use a decimation method for decomposition. After decomposition and morphology operation, we get edge images given by binary values. Our method calculates values of properties such as the number of pixels and the maximum length of the segmented region. We decide whether the segmented region belongs to cracks according to those data. Experimental results show that our proposed multi-scale crack detection method has better results than those of existing detection methods.

A Tone Mapping Algorithm Based on Multi-scale Decomposition

  • Li, Weizhong;Yi, Benshun;Huang, Taiqi;Yao, Weiqing;Peng, Hong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.4
    • /
    • pp.1846-1863
    • /
    • 2016
  • High dynamic range (HDR) images can present the perfect real scene and rich color information. A commonly encountered problem in practical applications is how to well visualize HDR images on standard display devices. In this paper, we propose a multi-scale decomposition method using guided filtering for HDR image tone mapping. In our algorithm, HDR images are directly decomposed into three layers:base layer, coarse scale detail layer and fine detail layer. We propose an effective function to compress the base layer and the coarse scale detail layer. An adaptive function is also proposed for detail adjustment. Experimental results show that the proposed algorithm effectively accomplishes dynamic range compression and maintains good global contrast as well as local contrast. It also presents more image details and keeps high color saturation.

AN INTERFERENCE FRINGE REMOVAL METHOD BASED ON MULTI-SCALE DECOMPOSITION AND ADAPTIVE PARTITIONING FOR NVST IMAGES

  • Li, Yongchun;Zheng, Sheng;Huang, Yao;Liu, Dejian
    • Journal of The Korean Astronomical Society
    • /
    • v.52 no.2
    • /
    • pp.49-55
    • /
    • 2019
  • The New Vacuum Solar Telescope (NVST) is the largest solar telescope in China. When using CCDs for imaging, equal-thickness fringes caused by thin-film interference can occur. Such fringes reduce the quality of NVST data but cannot be removed using standard flat fielding. In this paper, a correction method based on multi-scale decomposition and adaptive partitioning is proposed. The original image is decomposed into several sub-scales by multi-scale decomposition. The region containing fringes is found and divided by an adaptive partitioning method. The interference fringes are then filtered by a frequency-domain Gaussian filter on every partitioned image. Our analysis shows that this method can effectively remove the interference fringes from a solar image while preserving useful information.

Multi-scale Decomposition tone mapping using Guided Image Filter (가이디드 이미지 필터를 이용한 다중 스케일 분할 톤 매핑 기법)

  • Gao, Ming;Jeong, Jechang
    • Journal of Broadcast Engineering
    • /
    • v.23 no.4
    • /
    • pp.474-483
    • /
    • 2018
  • In this paper, we propose a multi-scale high dynamic range (HDR) tone mapping algorithm using guided image filter (GIF). The GIF is used to divide an image into a base layer and a detail layer, then the range of the detail layer is reduced with a compression function to enhance the detail information of the image. However, in most cases, an image includes the detail and edge information in different scales. That is to say, it is difficult to represent all detail features under a certain scale, and a single-scale image decomposition method is not free from artifacts around edges. To solve the problems, the multi-scale image decomposition method is proposed. It utilizes the detail layers of several scale to determine how much edge is preserved. Experiment results show that the proposed algorithm has better image performance in preserving edge compared to conventional algorithm.

A FE2 multi-scale implementation for modeling composite materials on distributed architectures

  • Giuntoli, Guido;Aguilar, Jimmy;Vazquez, Mariano;Oller, Sergio;Houzeaux, Guillaume
    • Coupled systems mechanics
    • /
    • v.8 no.2
    • /
    • pp.99-109
    • /
    • 2019
  • This work investigates the accuracy and performance of a $FE^2$ multi-scale implementation used to predict the behavior of composite materials. The equations are formulated assuming the small deformations solid mechanics approach in non-linear material models with hardening plasticity. The uniform strain boundary conditions are applied for the macro-to-micro transitions. A parallel algorithm was implemented in order to solve large engineering problems. The scheme proposed takes advantage of the domain decomposition method at the macro-scale and the coupling between each subdomain with a micro-scale model. The precision of the method is validated with a composite material problem and scalability tests are performed for showing the efficiency.

RECENT IMPROVEMENTS IN THE CUPID CODE FOR A MULTI-DIMENSIONAL TWO-PHASE FLOW ANALYSIS OF NUCLEAR REACTOR COMPONENTS

  • Yoon, Han Young;Lee, Jae Ryong;Kim, Hyungrae;Park, Ik Kyu;Song, Chul-Hwa;Cho, Hyoung Kyu;Jeong, Jae Jun
    • Nuclear Engineering and Technology
    • /
    • v.46 no.5
    • /
    • pp.655-666
    • /
    • 2014
  • The CUPID code has been developed at KAERI for a transient, three-dimensional analysis of a two-phase flow in light water nuclear reactor components. It can provide both a component-scale and a CFD-scale simulation by using a porous media or an open media model for a two-phase flow. In this paper, recent advances in the CUPID code are presented in three sections. First, the domain decomposition parallel method implemented in the CUPID code is described with the parallel efficiency test for multiple processors. Then, the coupling of CUPID-MARS via heat structure is introduced, where CUPID has been coupled with a system-scale thermal-hydraulics code, MARS, through the heat structure. The coupled code has been applied to a multi-scale thermal-hydraulic analysis of a pool mixing test. Finally, CUPID-SG is developed for analyzing two-phase flows in PWR steam generators. Physical models and validation results of CUPID-SG are discussed.

Piecewise Image Denoising with Multi-scale Block Region Detector based on Quadtree Structure (쿼드트리 기반의 다중 스케일 블록 영역 검출기를 통한 구간적 영상 잡음 제거 기법)

  • Lee, Jeehyun;Jeong, Jechang
    • Journal of Broadcast Engineering
    • /
    • v.20 no.4
    • /
    • pp.521-532
    • /
    • 2015
  • This paper presents a piecewise image denoising with multi-scale block region detector based on quadtree structure for effective image restoration. Proposed piecewise image denoising method suggests multi-scale block region detector (MBRD) by dividing whole pixels of a noisy image into three parts, with regional characteristics: strong variation region, weak variation region, and flat region. These regions are classified according to total pixels variation between multi-scale blocks and are applied principal component analysis with local pixel grouping, bilateral filtering, and structure-preserving image decomposition operator called relative total variation. The performance of proposed method is evaluated by Experimental results. we can observe that region detection results generated by the detector seems to be well classified along the characteristics of regions. In addition, the piecewise image denoising provides the positive gain with regard to PSNR performance. In the visual evaluation, details and edges are preserved efficiently over the each region; therefore, the proposed method effectively reduces the noise and it proves that it improves the performance of denoising by the restoration process according to the region characteristics.

A study on N-dimensional quad-tree decomposition

  • Yi, Cheon-Hee;Yi, Jae-Young
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.1
    • /
    • pp.43-48
    • /
    • 2009
  • We have examined the problem of the number of quad-tree blocks that an n-dimensional rectangle will be decomposed into on the average. the contribution of this paper are both practical and theoretical. In this paper, we develops the overlapping multi-scale models and the region quad-tree models which is useful in computer graphics animation, image processing, pattern recognition and also for modeling three dimensional objects. These models, which represent something of a conceptual departure from other models developed for multi-scale framework were developed with the specific interest of producing smooth estimates.

  • PDF

An Approach to Improve the Contrast of Multi Scale Fusion Methods

  • Hwang, Tae Hun;Kim, Jin Heon
    • Journal of Multimedia Information System
    • /
    • v.5 no.2
    • /
    • pp.87-90
    • /
    • 2018
  • Various approaches have been proposed to convert low dynamic range (LDR) to high dynamic range (HDR). Of these approaches, the Multi Scale Fusion (MSF) algorithm based on Laplacian pyramid decomposition is used in many applications and demonstrates its usefulness. However, the pyramid fusion technique has no means for controlling the luminance component because the total number of pixels decreases as the pyramid rises to the upper layer. In this paper, we extract the reflection light of the image based on the Retinex theory and generate the weight map by adjusting the reflection component. This weighting map is applied to achieve an MSF-like effect during image fusion and provides an opportunity to control the brightness components. Experimental results show that the proposed method maintains the total number of pixels and exhibits similar effects to the conventional method.

Analysis on Decomposition Models of Univariate Hydrologic Time Series for Multi-Scale Approach

  • Kwon, Hyun-Han;Moon, Young-Il;Shin, Dong-Jun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1450-1454
    • /
    • 2006
  • Empirical mode decomposition (EMD) is applied to analyze time series characterized with nonlinearity and nonstationarity. This decomposition could be utilized to construct finite and small number intrinsic mode functions (IMF) that describe complicated time series, while admitting the Hilbert transformation properties. EMD has the capability of being adaptive, capture local characteristics, and applicable to nonlinear and nonstationary processes. Unlike discrete wavelet transform (DWT), IMF eliminates spurious harmonics and retains meaningful instantaneous frequencies. Examples based on data representing natural phenomena are given to demonstrate highlight the power of this method in contrast and comparison of other ones. A presentation of the energy-frequency-time distribution of these signals found to be more informative and intuitive when based on Hilbert transformation.

  • PDF