DOI QR코드

DOI QR Code

Multi-scale Decomposition tone mapping using Guided Image Filter

가이디드 이미지 필터를 이용한 다중 스케일 분할 톤 매핑 기법

  • Gao, Ming (Department of Electronic Computer Engineering, Hanyang University) ;
  • Jeong, Jechang (Department of Electronic Computer Engineering, Hanyang University)
  • ;
  • 정제창 (한양대학교 전자컴퓨터통신공학과)
  • Received : 2018.05.03
  • Accepted : 2018.06.28
  • Published : 2018.07.30

Abstract

In this paper, we propose a multi-scale high dynamic range (HDR) tone mapping algorithm using guided image filter (GIF). The GIF is used to divide an image into a base layer and a detail layer, then the range of the detail layer is reduced with a compression function to enhance the detail information of the image. However, in most cases, an image includes the detail and edge information in different scales. That is to say, it is difficult to represent all detail features under a certain scale, and a single-scale image decomposition method is not free from artifacts around edges. To solve the problems, the multi-scale image decomposition method is proposed. It utilizes the detail layers of several scale to determine how much edge is preserved. Experiment results show that the proposed algorithm has better image performance in preserving edge compared to conventional algorithm.

본 논문에서는 가이디드 이미지 필터를 이용한 다중 스케일 넓은 동적 영역 톤 매핑 알고리듬을 제안한다. 가이디드 이미지 필터는 이미지를 베이스 레이어와 디테일 레이어로 나누기 위해 사용된다. 이때 디테일 레이어의 동적 영역을 줄이기 위해 압축 함수가 사용된다. 하지만 대부분의 경우의 이미지는 다양한 스케일의 디테일과 에지 정보를 포함하고있다. 즉, 특정 스케일로 디테일 특성을 표현하는 것은 불가능하며 단일 스케일 이미지 분할 방법은 에지 주변에서 열화 현상을 야기시킨다. 이러한 문제를 해결하기 위해 다중 스케일 이미지 분할 방법을 제안한다. 다중 스케일의 디테일 레이어들을 이용하여 에지 보존 정도를 조절한다. 실험 결과를 통해 제안하는 알고리듬이 기존의 알고리듬 보다 에지 보존의 정도가 더 우수함을 보인다.

Keywords

References

  1. T. Mitsunaga and S. K. Nayar, "High dynamic range imaging: Spatially varying pixel exposures," Proc. IEEE Comput. Soc. Conf. Computer Vision and Pattern Recognition, vol. 1, pp. 472-479, Jun. 2000.
  2. D.J.Jobson, Z.Rahman, and G.A.Woodell, "A multi-scale retinex for bridging the gap between color images and the human observation of scenes," IEEE Trans. on Image Processing: Special Issue on Color Processing, vol. 6, no. 7, pp. 965-976, Jul. 1997. https://doi.org/10.1109/83.597272
  3. C. Tomasi and R. Manduchi, "Bilateral Filtering for Gray and Color Images," Proc. Sixth Int'l Conf., Computer Vision, pp. 839-846, Jan. 1998.
  4. F. Durand and J. Dorsey, "Fast Bilateral Filtering for The Display of High Dynamic-range Images," ACM Trans. Graph., vol. 21, no. 3, pp. 257-266, Aug. 2002.
  5. K. He, J. Sun, and X. Tang, "Guided Image Filtering," IEEE Trans. Pattern Anal. Mach. Learn., vol. 35, no. 6, pp. 1397-1409, Jun. 2013. https://doi.org/10.1109/TPAMI.2012.213
  6. Black, M., Sapiro, G., Marimont, D., and Heeger, D., "Robust anisotropic diffusion." IEEE Trans. Image Processing, pp. 421-432, Mar. 1998.
  7. Black, M., Sapiro, G., Marimont, D., and Heeger, D., "Robust anisotropic diffusion." IEEE Trans. Image Processing, pp. 421-432, Mar. 1998.
  8. M. Ashikhmin, "A Tone Mapping Algorithm for High Contrast Images," Proc. 13th Eurographics Workshop Rendering, pp. 145-156, 2002.
  9. S. Bae, S. Paris, and F. Durand, "Two-Scale Tone Management for Photographic Look," Proc. ACM Siggraph, 2006.
  10. L. Zhang, X. L. Wu, "An edge-guided image interpolation algorithm via directional filtering and data fusion," IEEE Trans. Image Processing, vol. 15, no. 8, Aug. 2002.
  11. N. Liu, Y. Zhang, J. Xie, J. Yu, H. Xiao, and T. Min, "A Novel High Dynamic Range Image Enhancement Algorithm Based on Guided Image Filter," Optik, vol. 126, no. 23, pp. 4581-4585, Aug. 2015. https://doi.org/10.1016/j.ijleo.2015.08.057
  12. R. Fattal, D. Lischinshi, and M. Werman, "Gradient Domain High Dynamic Range Compression," Proc. ACM Siggraph, 2002.
  13. S. Li, X. Kang, and J. Hu, "Image fusion with guided filtering," IEEE Trans. Image Processing, vol. 22, no. 7, pp. 2864-2875, Jul. 2013. https://doi.org/10.1109/TIP.2013.2244222
  14. J. M. Dicarlo and B. A. Wandell, "Rendering high dynamic range images," Proc. SPIE, vol. 3965, pp. 392-401, May 2000.
  15. R. Fattal, M. Agrawala, and S. Rusinkiewicz, "Multiscale Shape and Detail Enhancement from Multi-Light Image Collections," Proc. ACM Siggraph, 2007.
  16. F. Banterle, P. Ledda, K. Debattista, and A. Chalmers, "Inverse Tone Mapping," Proc. Int'l Conf. Computer Graphics and Interactive Techniques (GRAPHITE), pp. 349-356, 2006.
  17. K. Ma and Z. Wang, "Multi-exposure image fusion: A patch-wise approach," Proc. IEEE Int. Conf. Image Process., pp. 1717-1721, Sep. 2015.
  18. Z. G. Li, J. H. Zheng, and S. Rahardja, "Detail-enhanced exposure fusion," IEEE Trans. Image Process., vol. 21, no. 11, pp. 4672-4676, Nov. 2012. https://doi.org/10.1109/TIP.2012.2207396
  19. K. Subr, C. Soler, and F. Durand, "Edge-preserving multiscale image decomposition based on local extrema," ACM Trans. Graph., vol. 28, no. 5, pp. 147-155, Dec. 2009. https://doi.org/10.1145/1618452.1618493
  20. Hojatollah Yeganeh, and Zhou Wang, "Objective Quality Assessment of Tone-Mapped Images," IEEE Trans. Image Process., vol. 22, no. 2, Feb. 2013.
  21. Z. Li, J. Zheng, Z. Zhu, W. Yao, and S. Wu, "Weighted guided image filtering," IEEE Trans. Image Process., vol. 24, no. 1, pp. 120-129, Jan. 2015. https://doi.org/10.1109/TIP.2014.2371234