• Title/Summary/Keyword: multi-rotor wind turbine

Search Result 25, Processing Time 0.02 seconds

Structural design methodology for lightweight supporting structure of a multi-rotor wind turbine

  • Park, Hyeon Jin;Oh, Min Kyu;Park, Soonok;Yoo, Jeonghoon
    • Wind and Structures
    • /
    • v.34 no.3
    • /
    • pp.291-301
    • /
    • 2022
  • Although mostly used in wind turbine market, single rotor wind turbines have problems with transportation and installation costs due to their large size. In order to solve such problems, multi-rotor wind turbine is being proposed; however, light weight design of multi-rotor wind turbine is required considering the installation at offshore or deep sea. This study proposes the systematic design process of the multi-rotor wind turbine focused on its supporting structure with simultaneous consideration of static and dynamic behaviors in an ideal situation. 2D and successive 3D topology optimization process based on the density method were applied to minimize the compliance of supporting structure. To realize the conceptual design obtained by topology optimization for manufacturing feasibility, the derived 3D structure was modified to have shell structures and optimized again through parametric design using the design of experiments and the response surface method for detail design of their thicknesses and radii. The resultant structure was determined to satisfy the stress and the buckling load constraint as well as to minimize the weight and the resultant supporting structure were verified numerically.

Mechanical Loads Analysis and Control of a MW Wind Turbine (MW 규모 풍력 터빈의 기계적 하중 특성 해석 및 제어)

  • Nam, Yoon-Su;Choi, Han-Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.9
    • /
    • pp.26-33
    • /
    • 2010
  • A multi-MW wind turbine is a huge mechanical structure, of which the rotor diameter is more or less than 100 m. Rotor blades experience unsymmetric mechanical loads caused by the interaction of incoming wind with the tower and wind shear effect. These mechanical loads are transferred to the entire structure of the wind turbine and are known as the major reasons for shortening the life span of the wind turbine. Therefore, as the size of wind turbine gets bigger, the mitigation of mechanical loads becomes more important issue in wind turbine control system design. In this paper, a concept of an individual pitch control(IPC), which minimizes the mechanical loads of rotor blades, is introduced, and simulation results using IPC are discussed.

An Investigation on Thrust Properties under Wind Shear for an On-Shore 2 MW Wind Turbine (윈드 쉬어에 의한 2MW급 육상용 풍력터빈의 추력 특성 확인)

  • Lim, Chae Wook
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.6
    • /
    • pp.14-18
    • /
    • 2016
  • Multi-MW wind turbines have very large blades over 40~50 m in length. Some factors like wind shear and tower shadow make an effect on asymmetric loads on the blades. Larger asymmetric loads are produced as the length of blade is getting longer. In this paper, a 2 MW on-shore wind turbine is considered and variations of thrust on 3 blades and rotor hub under wind shear are calculated by using a commercial Bladed S/W and dynamic properties of the thrust variations are investigated. It is shown that the amplitude of the asymmetric thrust on each blade under wind shear is getting larger as the wind speed increases, the frequency of the thrust variation on each blade is same as the one of rotor speed, and the frequency of the thrust variation at rotor hub is 3 times as high as the one of rotor speed.

Multi-MW Class Wind Turbine Blade Design Part I : Aero-Structure Design and Integrated Load Analysis (Multi-MW급 풍력발전용 블레이드 설계에 관한 연구 Part I : 공력-구조 설계 및 통합하중해석)

  • Kim, Bum Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.4
    • /
    • pp.289-309
    • /
    • 2014
  • A rotor blade is an important device that converts kinetic energy of wind into mechanical energy. Rotor blades affect the power performance, energy conversion efficiency, and loading and dynamic stability of wind turbines. Therefore, considering the characteristics of a wind turbine system is important for achieving optimal blade design. This study examined the general blade design procedure for a wind turbine system and aero-structure design results for a 2-MW class wind turbine blade (KR40.1b). As suggested above, a rotor blade cannot be designed independently, because its ultimate and fatigue loads are highly dependent on system operating conditions. Thus, a reference 2-MW wind turbine system was also developed for the system integrated load calculations. All calculations were performed in accordance with IEC 61400-1 and the KR guidelines for wind turbines.

Horizontal-Axis Wind Turbine System Modeling using Multi-body Dynamics (다몸체 역학을 이용한 수평축 풍력발전 시스템 모델링)

  • 민병문;노태수;송승호;최석우
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.1
    • /
    • pp.1-9
    • /
    • 2004
  • In this paper, an efficient modeling method of Horizontal-Axis Wind Turbine(HAWT) system is proposed. This method Is based on representing a HAWT system as a multi-body system with several rigid bodies i.e. rotor blade, low/high speed shaft, gear system, md generator. Also, simulation software WINSIM is developed to evaluate performance of wind turbine system. Simulation results show that the proposed modeling method and simulation software are efficient and reliable.

Study on the Available Power of a Wind Turbine for Wind Farm Control (풍력단지 제어를 위한 생산가능 출력에 대한 연구)

  • Oh, Yong Oon;Paek, In Su;Nam, Yoon Su;La, Yo Han
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • A study on the available power of a wind turbine to be used for wind farm control was performed in this study, To accurately estimate the available power it is important to obtain a suitable wind which represents the three dimensional wind that the wind turbine rotor faces and also used to calculate the power. For this, two different models, the equivalent wind and the wind speed estimator were constructed and used for dynamic simulation using matlab simulink. From the comparison of the simulation result with that from a commercial code based on multi-body dynamics, it was found that using the hub height wind to estimate available power from a turbine results in high frequency components in the power prediction which is, in reality, filtered out by the rotor inertia. It was also found that the wind speed estimator yielded less error than the equivalent wind when compared with the result from the commercial code.

Performance Analysis and Pitch Control of Dual-Rotor Wind Turbine Generator System (Dual-Rotor 풍력 발전 시스템 성능 해석 및 피치 제어에 관한 연구)

  • Cho, Yun-Mo;No, Tae-Soo;Jung, Sung-Nam;Kim, Ji-Yon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.7
    • /
    • pp.40-50
    • /
    • 2005
  • In this paper, preliminary results for performance prediction of a dual-rotor wind turbine generator system are presented. Blade element and momentum theories are used to model the aerodynamic forces and moments acting on the rotor blades, and multi-body dynamics approach is used to integrate the major components to represent the overall system. Not only the steady-state performance but the transient response characteristics are analyzed. Pitch control strategy to control the rotor speed and the generator output is proposed and its performance is verified through the nonlinear simulation.

Feedforward Pitch Control Using Wind Speed Estimation

  • Nam, Yoon-Su;Kim, Jeong-Gi;Paek, In-Su;Moon, Young-Hwan;Kim, Seog-Joo;Kim, Dong-Joon
    • Journal of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.211-217
    • /
    • 2011
  • The dynamic response of a multi-MW wind turbine to a sudden change in wind speed is usually slow, because of the slow pitch control system. This could cause a large excursion of the rotor speed and an output power over the rated. A feedforward pitch control can be applied to minimize the fluctuations of these parameters. This paper introduces the complete design steps for a feedforward pitch controller, which consist of three stages, i.e. the aerodynamic torque estimation, the 3-dimensional lookup table for the wind seed estimation, and the calculation of the feedforward pitch amount. The effectiveness of the feedforward control is verified through numerical simulations of a multi-MW wind turbine.

Efficient Super-element Structural Vibration Analyses of a Large Wind-turbine Rotor Blade Considering Rotational and Aerodynamic Load Effects (회전 및 풍하중 가진 효과를 고려한 대형 풍력발전 로터의 효율적인 슈퍼요소 구조진동해석)

  • Kim, Dong-Man;Kim, Dong-Hyun;Park, Kang-Kyun;Kim, Yu-Sung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.7
    • /
    • pp.651-658
    • /
    • 2009
  • In this study, computer applied engineering(CAE) techniques are fully used to efficiently conduct structural and dynamic analyses of a huge composite rotor blade using super-element. Computational fluid dynamics(CFD) is used to predict aerodynamic loads of the rotating wind-turbine blade. Structural vibration analysis is conducted based on the non-linear finite element method for composite laminates and multi-body dynamic simulation tools. Various numerical results are presented for comparison and the structural dynamic behaviors of the rotor blade are investigated herein.

Structural and Vibration Analyses of 3MW Class Wind-Turbine Blade Using CAE Technique (CAE 기법을 활용한 3MW급 풍력발전기 로터의 구조 및 진동해석)

  • Kim, Yo-Han;Park, Hyo-Geun;Kim, Dong-Hyun;Kim, Dong-Man;Hwang, Byoung-Sun;Park, Ji-Sang;Jung, Sung-Hoon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.4
    • /
    • pp.22-31
    • /
    • 2008
  • In this study, computer applied engineering (CAE) techniques are fully used to conduct structural and dynamic analyses of a huge composite rotor blade. Computational fluid dynamics is used to predict aerodynamic load of the rotating wind-turbine blade model. Static and dynamic structural analyses are conducted based on finite element method for composite laminates and multi-body dynamic simulation tools. Various numerical results for aerodynamic load, static stress, buckling and dynamic analyses are presented and characteristics of structural behaviors are investigated herein.