• Title/Summary/Keyword: multi-plate design

Search Result 177, Processing Time 0.026 seconds

Multi-function Control of Hydraulic Variable Displacement Pump with EPPR Valve (전자비례감압밸브를 이용한 가변용량형 유압펌프의 다기능 제어)

  • Jung, Dong-Soo;Kim, Hyong-Eui;Kang, E-Sok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.160-170
    • /
    • 2006
  • If hydraulic pump controlled by mechanical type regulator has more than one control function, the construction of regulator will be very complicated and control performance falls drastically. It is difficult to have more than one control function for hydraulic pump controlled by electronic type hydraulic valve due to the inconsistency of controllers. This paper proposes a multi-function control technique which controls continuously flow, pressure and power by using EPPR(Electronic Proportional Pressure Reducing) valve in swash plate type axial piston pump. Nonlinear mathematical model is developed from the continuity equation for the pressurized control volume and the torque balance for the swash plate motion. To simplify the model we make the linear state equation by differentiating the nonlinear model. A reaction spring is installed in servo cylinder to secure the stability of the control system. We analyze the stability and disturbance by using the state variable model. Finally, we review the control performances of flow, pressure and power by tests using PID controller.

Analysis of Angular Deformation in Multi-pass Butt Joint Welding of Thick Plates with X-shape Grooves using the Finite Element Method (X형 개선을 가진 후판 맞대기 용접에 있어서 유한요소법을 이용한 각변형 해석)

  • Yang, Young-Soo;Bae, Kang-Yul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.4
    • /
    • pp.169-176
    • /
    • 2018
  • Removal of angular deformation induced during the welding of butt joints in thick steel plates needs expert skill and is costly. To reduce deformation, proper joint designs are studied with a prediction of deformation prior to welding. However, as the thickness of a plate increases, a predictive analysis of the welding process is more difficult, especially if there is an increase in the number of welding passes in the joint. In this study, a numerical model with the finite element method (FEM) was developed to analyze the angular deformation in the multi-pass welding of butt joints of plates made of AH32 steel that had a thickness of up to 100 mm. A series of numerical simulations were then performed based on the developed model to predict the deformations for thick plates. With the results obtained by the analyses, this study suggested optimal X-shape grooves for the butt joints of thick plates to minimize the angular deformation. As the thickness of the plate increased to 100 mm, the ratio of the depth of the front-side groove to that of the back-side groove should be gradually increased to nearly 1:3.

An experimental study of the behaviour of double sided welded plate connections in precast concrete frames

  • Gorgun, Halil
    • Steel and Composite Structures
    • /
    • v.29 no.1
    • /
    • pp.1-22
    • /
    • 2018
  • Multi-storey precast concrete skeletal structures are assembled from individual prefabricated components which are erected on-site using various types of connections. In the current design of these structures, beam-to-column connections are assumed to be pin jointed. Welded plate beam to-column connections have been used in the precast concrete industry for many years. They have many advantages over other jointing methods in component production, quality control, transportation and assembly. However, there is at present limited information concerning their detailed structural behaviour under bending and shear loadings. The experimental work has involved the determination of moment-rotation relationships for semi-rigid precast concrete connections in full scale connection tests. The study reported in this paper was undertaken to clarify the behaviour of such connections under symmetrical vertical loadings. A series of full-scale tests was performed on sample column for which the column geometry and weld arrangements conformed with successful commercial practice. Proprietary hollow core slabs were tied to the beams by tensile reinforcing bars, which also provide the in-plane continuity across the connections. The strength of the connections in the double sided tests was at least 0.84 times the predicted moment of resistance of the composite beam and slab. The secant stiffness of the connections ranged from 0.7 to 3.9 times the flexural stiffness of the attached beam. When the connections were tested without the floor slabs and tie steel, the reduced strength and stiffness were approximately a third and half respectively. This remarkable contribution of the floor strength and stiffness to the flexural capacity of the joint is currently neglected in the design process for precast concrete frames. In general, the double sided connections were found to be more suited to a semi-rigid design approach than the single sided ones. The behaviour of double sided welded plate connection test results are presented in this paper. The behaviour of single sided welded plate connection test results is the subject of another paper.

Placement of passive Constrained Layer Damping for Vibration Control of Smart Plate (지능판의 진동제어를 위한 수동구속감쇠의 위치 설정)

  • Kang, Yong-Kyu;Kim, Chan-Mook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.12-16
    • /
    • 2002
  • Dynamic characteristics of smart laminated composite plates with passive constrained layer damping have been investigated to design structure with maximum possible damping capacity. The equations of motion are derived for flexural vibrations of symmetrical, multi-layer laminated plates. The damping ratio and modal damping of the first bending and torsional modes are calculated by means of iterative complex eigensolution method. The structural damping index(SDI) is introduced to determine the optimum placement of viscoelastic patch. This paper addresses a design strategy of laminated composite plate under vibrations.

  • PDF

A study on structural improvement in multi-cavity mold for ham can lids (햄 뚜껑 금형의 다수 캐비티 금형구조 개선에 관한 연구)

  • Lee, Eun-jong;Choi, Kye-kwang;Kim, Sei-hwan
    • Design & Manufacturing
    • /
    • v.7 no.1
    • /
    • pp.40-44
    • /
    • 2013
  • My company develops, manufactures injection mold and produces thin-walled cosmetics and food containers. Without high quality and low production cost, it is hard to compete in the market. To be competitive, a company has to utilize mold with as many cavities as possible to lower manufacturing cost. Eject plate abrasion and deformation cut down mold lifespan, troubles during injection lower productivity and foreign substances in molds cause abrasion. This study focuses on how to improve mold life and productivity, and to slow down mold abrasion.

  • PDF

EFFECTS OF FORMING PROCESS ON SEALING PERFORMANCE OF FULL-BEAD OF MLS GASKET: FINITE ELEMENT ANALYSIS APPROACH

  • CHO S.-S.;HAN B. K.;CHANG H.;KIM B. K.
    • International Journal of Automotive Technology
    • /
    • v.6 no.2
    • /
    • pp.191-196
    • /
    • 2005
  • A full-bead of multi-layer-steel (MLS) engine head gasket is used to seal the combustion gas. Finite element analyses were conducted to assess the dependence of the sealing performance of full-bead on the forming process consisting of embossing and flatting operations. It is demonstrated that the sealing performance is enhanced with more severe deformation of the bead plate during the embossing, i.e., with the increase in the punching depth, the punch height, the punch width and the friction coefficient of the bead plate against the punch and die, and with the decrease in the width of die cavity. Meanwhile, the flatting process that is employed to adjust the height of the embossed full-bead has no influence on the sealing performance.

Numerical procedure for the vibration analysis of arbitrarily constrained stiffened panels with openings

  • Cho, Dae Seung;Vladimir, Nikola;Choi, Tae Muk
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.763-774
    • /
    • 2014
  • A simple and efficient vibration analysis procedure for stiffened panels with openings and arbitrary boundary conditions based on the assumed mode method is presented. Natural frequencies and modes are determined by solving an eigenvalue problem of a multi-degree-of-freedom system matrix equation derived by using Lagrange's equations of motion, where Mindlin theory is applied for plate and Timoshenko beam theory for stiffeners. The effect of stiffeners on vibration response is taken into account by adding their strain and kinetic energies to the corresponding plate energies whereas the strain and kinetic energies of openings are subtracted from the plate energies. Different stiffened panels with various opening shapes and dispositions for several combinations of boundary conditions are analyzed and the results show good agreement with those obtained by the finite element analysis. Hence, the proposed procedure is especially appropriate for use in the preliminary design stage of stiffened panels with openings.

Design and Fabrication of Linear-Type Ultrasonic Motor using Ll-B4 Vibration Mode (Ll-B4 진동모드를 이용한 linear-Type Ultrasonic Motor의 설계 및 시작)

  • 이종섭;임기조;정수현;정중기;임태빈
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.29-32
    • /
    • 1998
  • A plate-type ultrasonic linear motor using longitudinal and bending multi-vibration mode was designed and fabricated for card-forwarding device. The rotor consisted of piezoelectric ceramic plate and elastic materials. The performances of the motor were measured. As the experimental results, no-load speed of the motor was 0.6 m/s at 80 V in applied voltage. Starting torque was 1.4 mNm and maximum efficiency was 1.2 %.

  • PDF

Development of a simplified equivalent braced frame model for steel plate shear wall systems

  • Chatterjee, Arghya Kamal;Bhowmick, Anjan;Bagchi, Ashutosh
    • Steel and Composite Structures
    • /
    • v.18 no.3
    • /
    • pp.711-737
    • /
    • 2015
  • Steel Plate Shear Walls (SPSWs) have been accepted widely as an effective lateral load resisting system. For seismic performance evaluation of a multi-story building with SPSWs, detailed finite element models or a strip model can be used to represent the SPSW components. However, such models often require significant effort for tall or medium height buildings. In order to simplify the analysis process, discrete elements for the framing members can be used. This paper presents development of a simplified equivalent braced model to study the behavior of the SPSWs. The proposed model is expected to facilitate a simplification to the structural modeling of large buildings with SPSWs in order to evaluate the seismic performance using regular structural analysis tools. It is observed that the proposed model can capture the global behavior of the structures quite accurately and potentially aid in the performance-based seismic design of SPSW buildings.

Small Electrode Ring Forming by Multi-Forming Process (멀티 성형 가공법을 활용한 전극용 소형 링 성형)

  • Yoon, Il-Chae;Ko, Tae-Jo;Lee, Chun;Kim, Hui-Sul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.3
    • /
    • pp.38-45
    • /
    • 2009
  • Recently, LCD Backlight Unit is being replaced from cold cathode fluorescent lamp(CCFL) to external electrode fluorescent lamp(EEFL) because the EEFL has high energy efficiency and long life. Also, it can reduce energy consumption and weight. So far, external electrode ring for EEFL is produced by sheet metal press forming process. Therefore it had low precision and much material loss. To solve these problems, Multi-Forming process that has five step forming process was invented. However, low productivity is another barrier. Product speed that is controlled by the rotational speed cannot be increased due to the unsatisfied design specification. The reason is that the gap between rolled two edge parts of the sheet plate is tightly inspected. Regarding this factor, the understanding of forming behavior to each process is inevitable. This paper describes the CAE analysis of the multi-forming process by PAM-STAMP.

  • PDF