• 제목/요약/키워드: multi-pilot tube

검색결과 9건 처리시간 0.022초

다점 피토관 유량계의 특성에 관한 연구 (A Study on the Characteristics of Multi-point Pilot Tube Flow-meter)

  • 임재명;윤복현;박경암
    • 한국유체기계학회 논문집
    • /
    • 제4권2호
    • /
    • pp.35-43
    • /
    • 2001
  • The flow characteristics passing a multi-point Pitot tube flow-meter of diamond shape and the characteristics of flow coefficients of the flow-meter are experimentally studied by varying combination of upstream rectangular dual elbows. The results provide the flow coefficients, which show good stability and reliability within the Reynolds number range coveted here in this study, and which can be used to measure flow-rates in practice. The variation of dual elbows upstream can change the velocity field so much that the flow pattern might thwart the precise flow measurement using the multi-point Pitot tube. The strongest swirl is detected in the case of $90^{\circ}$ dual elbow combination of all. In addition, it is observed that flow separation remains unchanged and occurs at the same point irrespective of various upstream dual elbow combinations.

  • PDF

3D numerical simulation of temperature on Pilot tube

  • Ying Wang;Baogeng Ding
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2006년도 PARALLEL CFD 2006
    • /
    • pp.248-251
    • /
    • 2006
  • Multi-physics problem is considered for the Pitot tube located in uniform freon gas flow with high Mach number and the 3D numerical results of temperature on Pitot tube is given. The model is created by using structural module of ANSYS, the grids are obtained by ICEM, and the problem is solved and the data post-processing is done by CFX.

  • PDF

Pilot 플라즈마 반응기를 이용한 하수 중 미생물의 불활성화 (Inactivation of Microorganisms in Sewage Using a Pilot Plasma Reactor)

  • 김동석;박영식
    • 한국환경보건학회지
    • /
    • 제39권3호
    • /
    • pp.289-299
    • /
    • 2013
  • Objectives: For the field application of the dielectric barrier discharge plasma reactor, scale-up of the plasma reactor is needed. This study investigated the possibility of inactivation of microorganisms in sewage using pilot multi-plasma reactor. We also considered the possibility of degradation of total organic carbon (TOC) and nonbiodegradable matter ($UV_{254}$) in sewage. Methods: The pilot plasma reactor consists of plasma reactor with three plasma modules (discharge electrode and quartz dielectric tube), liquid-gas mixer, high voltage transformers, gas supply equipment and a liquid circulation system. In order to determine the operating conditions of the pilot plasma reactor, we performed experiments on the operation parameters such as gas and liquid flow rate and electric discharge voltage. Results: The experimental results showed that optimum operation conditions for the pilot plasma reactor in batch experiments were 1 L/min air flow rate), 4 L/min liquid circulation rate, and 13 kV electric discharge voltage, respectively. The main operation factor of the pilot plasma process was the high voltage. In continuous operation of the air plasma process, residual microorganisms, $UV_{254}$ absorbance and TOC removal rate at optimal condition of 13 kV were $10^{2.24}$ CFU/mL, 56.5% and 8.6%, respectively, while in oxygen plasma process at 10 kV, residual microorganisms, $UV_{254}$ absorbance and TOC removal rate at optimal conditions were $10^{1.0}$ CFU/mL, 73.3% and 24.4%, respectively. Electric power was increased exponentially with the increase in high voltage ($R^2$ = 0.9964). Electric power = $0.0492{\times}\exp^{(0.6027{\times}lectric\;discharge\;voltage)}$ Conclusions: Inactivation of microorganisms in sewage effluent using the pilot plasma process was done. The performance of oxygen plasma process was superior to air plasma process. The power consumption of oxygen plasma process was less than that of air plasma process. However, it was considered that the final evaluation of air and oxygen plasma must be evaluated by considering low power consumption, high process performance, operating costs and facility expenses of an oxygen generator.

Multi-Dimension Scaling as an exploratory tool in the analysis of an immersed membrane bioreactor

  • Bick, A.;Yang, F.;Shandalov, S.;Raveh, A.;Oron, G.
    • Membrane and Water Treatment
    • /
    • 제2권2호
    • /
    • pp.105-119
    • /
    • 2011
  • This study presents the tests of an Immersed Membrane BioReactor (IMBR) equipped with a draft tube and focuses on the influence of hydrodynamic conditions on membrane fouling in a pilot-scale using a hollow fiber membrane module of ZW-10 under ambient conditions. In this system, the cross-flow velocities across the membrane surface were induced by a cylindrical draft-tube. The relationship between cross-flow velocity and aeration strength and the influence of the cross-flow on fouling rate (under various hydrodynamic conditions) were investigated using Multi-Dimension Scaling (MDS) analysis. MDS technique is especially suitable for samples with many variables and has relatively few observations, as the data about Membrane Bio-Reactor (MBR) often is. Observations and variables are analyzed simultaneously. According to the results, a specialized form of MDS, CoPlot enables presentation of the results in a two dimensional space and when plotting variables ratio (output/input) rather than original data the efficient units can be visualized clearly. The results indicate that: (i) aeration plays an important role in IMBR performance; (ii) implementing the MDS approach with reference to the variables ratio is consequently useful to characterize performance changes for data classification.

An Overview of The Commercialisation of The Spray Forming Process

  • Leatham, Alan
    • 한국분말재료학회지
    • /
    • 제3권4호
    • /
    • pp.227-232
    • /
    • 1996
  • (i) The development of a metallurgical bond during the spray forming of clad products has offered the possibility of manufacturing large rolls, including those used in hot and cold strip mills. Small rolls are already being produced in Japan. (ii) Technical developments, including the use-of-multi-atomizers have resulted in the elimination of porosity from the internal bore of a sprayed tube. Bimetallic tubing can also be manufactured and the installation of a 4.5 ton tube plant in the USA should provide low operation costs. (iii) Spray forming offers a potentially low cost manufacturing route for superalloy ring/casing components in high strength superalloys. (iv) A large pilot plant has been built for the spray forming of ultra-clean superalloys for turbine disc applications. (v) Using twin-atomizing technology, special steel billets have been spray formed up to 400mm diameter with deposition yields in excess of 90%. (vi) Al/Si alloy extrusion billets with excellent dimensional tolerances are being manufactured for large scale automotive applications. Several new aluminum alloys have also been developed, including high strength, low density and low cocfficient of expansion materials. (vii) New copper alloys have been developed and pilot plants are in operation to produce these alloys once markets have become established.

  • PDF

MPA 유량계 압력감지공의 위치와 유출계수 (Location of pressure sensing holes in MPA flowmeter and discharge coefficients)

  • 김기현;최성길
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2004년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.160-165
    • /
    • 2004
  • MPA (Multi-Point Averaging) flow element is a new type of differential pressure (DP) flow-sensing device that was developed by Seojin Instech to improve the operating characteristics of the conventional Averaging Pilot Tube (APT) flow elements. Operating characteristics of a flowmeter in general can be defined in terms of measurement accuracy and range. Improvement of accuracy and expanding the range of flow measurement were the two main objectives of the development. To achieve these dual objectives several upstream and downstream pressure-sensing holes were placed in MPA flow element. During the course of the development it was found that certain arrangements of the pressure-sensing holes improved measurement accuracy but did not expand operating flow range of Averaging Pilot Tubes. Development tests were performed with water between Reynolds number of 50,000 and 1,000,000 in the four-inch test line at the Alden Research Laboratory, U.S.A. Purpose of this paper is to present the relationship between the various locations of the pressure-sensing holes and the performance characteristics of MPA flow element. Furthermore, the operating characteristics of the best performing MPA are compared with those of typical orifice and APT.

  • PDF

분리형 가스절단팁 개발 (The Development of Multi Pieces Gas Cutting Tip)

  • 이권희;김지온;하지수;박부민
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 1999년도 특별강연 및 추계학술발표대회 개요집
    • /
    • pp.146-149
    • /
    • 1999
  • To develope the high speed gas cutting tip, consists of 3 pieces, supersonic axisymmetric jets issuing from various kinds of nozzles with a throat diameter of a few milimeters were experimentally investigated. The nozzle inlet pressure was varied from 4 to 8 kgf/$\textrm{cm}^2$. The parameters in nozzle design were throat diameter, throat length, taper angle, outlet diameter. The total pressure variation was measured by the pilot tube, 0.5mm outer diameter, along the center of the free stream jet. Also color Shilieren system was used to visualize the flowfield.

  • PDF

원형이중관내의 난류유동의 열전달 특성에 관한 실험적 연구 (An Experimental Study on Heat Transfer Characteristics with Turbulent Flow in a Cylindrical Annuli)

  • 장태현;이권수
    • 한국산업융합학회 논문집
    • /
    • 제5권3호
    • /
    • pp.193-200
    • /
    • 2002
  • An experimental study was performed to study heat transfer characteristics for turbulent flow in an axisymmetric annuli. The air flow temperature and the local Nusselt number in turbulent flow were measured or calculated for Re=30,000, 40,000, 50,000, 60,000, 70,000 and 80,000. The local Nusselts number were compared to that obtained from Dittus-Boelter equation with turbulent flow. The results show that the flow enhances the heat transfer in the initial and exit portion of the test tube.

  • PDF

E-PER 반응기를 이용한 유기성 폐기물의 혐기성 처리와 재생에너지 생산에 관한 연구 (Anaerobic Organic Wastewater Treatment and Energy Regeneration by Utilizing E-PFR System)

  • 김범식;최홍복;이재기;박주형;지덕기;최은주
    • 유기물자원화
    • /
    • 제16권2호
    • /
    • pp.57-65
    • /
    • 2008
  • 일반적 중 저농도형 하수처리시설을 통해서는 처리가 힘든 고농도 유기성 폐수의 경우 재생에너지 생산이 가능한 혐기성 분해로 처리하는 것이 유리하다. 기존 호기성 처리에서 이미 그 실용성과 우수성이 입증된 E-PFR을 혐기성 처리에 적용하여 그 효용성과 재생에너지 생산 효율 증대 효과 등을 검증하고, 효율적인 재생에너지 생산을 위한 조건 등을 제시하기 위한 연구를 수행하였다. N 음식물쓰레기 처리시설에서 발생하는 탈리액을 대상으로 수행한 Pilot Plant 규모의 실험 연구에서 반응기의 구조적 특성으로 인해 혐기성 분해의 효율 향상 및 메탄가스 발생량이 증가함을 확인하였다. 이러한 처리 효율의 향상은 유체 이동관과 각단을 분리하는 격벽을 설치한 E-PFR의 구조적 특성에 기인한 원활한 혼합조건 형성과 스컴제어로 혐기성 처리에 있어서도 매우 이상적인 반응 조건을 형성시키기가 용이하였기 때문이다. E-PFR은 상향류식 폐수 유입과 각 단별로 분리된 다단형 처리로 인해 폐수 유입 구역에는 상대적으로 높은 MLSS가 유지될 수 있으므로 충격부하에 대한 내성이 강하고, 전체적으로 혐기성 최적 pH인 7.0~8.0 정도를 유지하여 상대적으로 높은 가스 발생량 및 메탄가스 함량을 유지하는 것이 가능하였다. 뿐만 아니라, 각 단별로 각기 다른 MLSS를 유지시키면서 SRT를 상대적으로 길게 유지함으로써 유기물 분해 및 가스 발생 효율을 증가시키는 효과가 있었다. 향후, 반응기의 구조적 개선과 발생가스를 이용한 교반 효과 개선 등을 통해 메탄가스 함량 70 % 수준의 안정적 혐기성 분해가 가능한 실증 플랜트 설계가 가능할 것으로 판단되며, 이를 통해 한층 향상된 재생에너지 획득 시스템 확보가 가능할 것이다.

  • PDF