• Title/Summary/Keyword: multi-phase composite

Search Result 80, Processing Time 0.02 seconds

Stoneley wave propagation in nonlocal isotropic magneto-thermoelastic solid with multi-dual-phase lag heat transfer

  • Lata, Parveen;Singh, Sukhveer
    • Steel and Composite Structures
    • /
    • v.38 no.2
    • /
    • pp.141-150
    • /
    • 2021
  • In the present paper we have investigated the Stoneley wave propagation at the interface of two dissimilar homogeneous nonlocal magneto-thermoelastic media under the effect of hall current applied to multi-dual-phase lag heat transfer. The secular equations of Stoneley waves have been derived by using appropriate boundary conditions. The wave characteristics such as attenuation coefficients, temperature distribution and phase velocity are computed and have been depicted graphically. Effect of nonlocal parameter and hall effect are studied on the attenuation coefficient, phase velocity, temperature distribution change, stress component and displacement component. Also, some particular cases have been discussed from the present study.

A Design of Greenhouse Control Algorithm with the Multiple-Phase Processing Scheme (다중 위상 처리구조를 갖는 온실 복합환경제어 알고리즘 설계)

  • Daewook Bang
    • Journal of Service Research and Studies
    • /
    • v.11 no.2
    • /
    • pp.118-130
    • /
    • 2021
  • This study designs and validates a greenhouse complex environmental control algorithm with a multi-phase processing scheme that can combine and control actuators according to the degree of change in the greenhouse environment. The composite environmental control system is a system in which the complex environmental controller analyzes the information detected by sensors and operates appropriately actuators to maintain the crop growth environment. A composite environmental controller directs control devices driving actuators through a composite environmental control algorithm, which calculates the values necessary for the operation of the control devices. Most existing algorithms carry out control procedures on a single phase by iteration cycle, which can cause abnormal changes in the greenhouse environment due to errors in output. The proposed algorithm distributes control procedures over multiple phases: environmental control, environmental control, and device operation, and every iteration cycle, detects environmental changes in the environmental control phase first, and then combines control devices that can control the environment in the environmental control phase, and finally, performs the controls to derive the actuators in the device operation phase. The proposed algorithm is designed based on the analysis of the relationship between greenhouse environmental elements and control devices deriving actuators. According to verification analysis, the multi-phase processing scheme provides room to modify or supplement the setting value and enables the control devices to reflect changes in the associated environmental components.

The effect of multi-phase-lag and Coriolis acceleration on a fiber-reinforced isotropic thermoelastic medium

  • Alharbi, Amnah M.;Said, Samia M.;Othman, Mohamed I.A.
    • Steel and Composite Structures
    • /
    • v.39 no.2
    • /
    • pp.125-134
    • /
    • 2021
  • The three-phase-lag model, thermoelasticity without energy dissipation (G-N II) theory and thermoelasticity with energy dissipation (G-N III) theory are applied to study the effect of rotation on a fiber-reinforced thermoelastic medium. The exact expressions for the physical quantities were obtained by using the normal mode analysis. The numerical results for the field quantities are given in the physical domain and illustrated graphically in the absence and presence of rotation, Coriolis acceleration as well as reinforcement parameters.

Control Strategy for Three-Phase Grid-Connected Converters under Unbalanced and Distorted Grid Voltages Using Composite Observers

  • Nguyen, Thanh Hai;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.469-478
    • /
    • 2013
  • This paper proposes a novel scheme for the current controller for the grid-side converter (GSC) of permanent-magnet synchronous generator (PMSG) wind turbines to eliminate the high-order harmonics in the grid currents under grid voltage disturbances. The voltage unbalance and harmonics in three-phase systems cause grid current distortions. In order to mitigate the input current distortions, multi-loop current controllers are applied, where the positive-sequence component is regulated by proportional-integral (PI) controllers, and the negative-sequence and high-order harmonic components are regulated by proportional-resonance (PR) controllers. For extracting the positive/negative-sequence and harmonic components of the grid voltages and currents without a phase delay or magnitude reduction, composite observers are applied, which give faster and more precise estimation results. In addition, an active damping method using PR controllers to damp the grid current component of the resonant frequency is employed to improve the operating stability of VSCs with inductor-capacitor-inductor (LCL) filters. The validity of the proposed method is verified by simulation and experimental results.

Micromechanical Models for the Evaluation of Elastic Moduli of Concretes (콘크리트 탄성계수 추정의 미시역학적 모델)

  • 조호진;송하원;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.383-391
    • /
    • 1997
  • The prediction of effective properties of heterogeneous material like concrete is of primary importance in design or analysis. This paper os about micromechanice-based evaluation of elastic moduli of concretes considering composite material behavior. In this study, micromechanixe-based schemes for the effective elastic modui of the lightweight foamed concrete and the normal concrete are proposed based on averaging techniques using a single-layered inclusion model and a multi-phase and multi-layered inclusion model. respectively, For the verification's sake, elastic moduli evaluated in this study are compared with experimental data and results by existing formula.

  • PDF

Effect of Poly(butyl acrylate)-Poly(methyl methacrylate) Rubber Particle Texture on the Toughening Behavior of Poly(methyl methacrylate)

  • Chung, Jae-Sik;Park, Kyung-Ran;Wu, Jong-Pyo;Han, Chang-Sun;Lee, Chan-Hong
    • Macromolecular Research
    • /
    • v.9 no.2
    • /
    • pp.122-128
    • /
    • 2001
  • Monodisperse composite latex particles with size of ca. 300 nm, which consist ofn-butyl acrylate as a soft phase and methyl methacrylate as a hard phase with different morphology, were synthesized by seeded multi-stage emulsion polymerization. Three types of composite latex particles including random-, core/shell-, and gradient-type particles were obtained by using different monomer feeding methods during semi-batch emulsion polymerization. Effect of poly(butyl acrylate)-poly(methyl methacrylate) rubber particle morphology on the mechanical and rheological properties of rubber toughened poly(methyl methacrylate) was investigated. Among three different rubber particles, the gradient-type rubber particle showed better toughening effect than others. No significant variation of rheological property of poly(methyl methacrylate)/rubber blends was observed for the different rubber particle morphology.

  • PDF

Multi-phase magneto-electro-elastic stability of nonlocal curved composite shells

  • Song, Yu;Xu, Jiangyang
    • Steel and Composite Structures
    • /
    • v.41 no.6
    • /
    • pp.775-785
    • /
    • 2021
  • Analysis of nonlinear stability behaviors of composite magneto-electro-elastic (MEE) nano-scale shells have been represented in this reaserch. The shell is assumed to be under a transverse mechanical load. Composite MEE material has been produced form piezoelectric and magnetic ingradients in which the material charactristics may be varied according to the percentages of the ingradients. The governing equations including scale effects have been developed in the framework of nonlocal elasticity. It has been demonstrated that nonlinear stability behaviors of MEE nano-sized shells in electrical-magnetic fields rely on the percentages of the ingradients. Also, the efficacy of nonlocality parameter, magnetic intensities and electrical voltages on stability loads of the nanoshells have been researched.

Multi-material topology optimization of Reissner-Mindlin plates using MITC4

  • Banh, Thien Thanh;Lee, Dongkyu
    • Steel and Composite Structures
    • /
    • v.27 no.1
    • /
    • pp.27-33
    • /
    • 2018
  • In this study, a mixed-interpolated tensorial component 4 nodes method (MITC4) is treated as a numerical analysis model for topology optimization using multiple materials assigned within Reissner-Mindlin plates. Multi-material optimal topology and shape are produced as alternative plate retrofit designs to provide reasonable material assignments based on stress distributions. Element density distribution contours of mixing multiple material densities are linked to Solid Isotropic Material with Penalization (SIMP) as a design model. Mathematical formulation of multi-material topology optimization problem solving minimum compliance is an alternating active-phase algorithm with the Gauss-Seidel version as an optimization model of optimality criteria. Numerical examples illustrate the reliability and accuracy of the present design method for multi-material topology optimization with Reissner-Mindlin plates using MITC4 elements and steel materials.

Double bonded Cooper-Naghdi micro sandwich cylindrical shells with porous core and CNTRC face sheets: Wave propagation solution

  • Yazdani, Raziye;Mohammadimehr, Mehdi
    • Computers and Concrete
    • /
    • v.24 no.6
    • /
    • pp.499-511
    • /
    • 2019
  • In this paper, wave propagation of double-bonded Cooper-Naghdi micro sandwich cylindrical shells with porous core and carbon nanotube reinforced composite (CNTRC) face sheets are investigated subjected to multi-physical loadings with temperature dependent material properties. The governing equations of motion are derived by Hamilton's principle. Then, the influences of various parameters such as wave number, CNT volume fraction, temperature change, Skempton coefficient, material length scale parameter, porosity coefficient on the phase velocity of double-bonded micro sandwich shell are taken into account. It is seen that by increasing of Skempton coefficient, the phase velocity decreases for higher wave number and the results become approximately the constant. Also, by increasing of the material length scale parameter, the cut of frequency increases, because the stiffness of micro structure increases. The obtained results for this article can be used to detect, locate and quantify crack.

Interactions in a homogeneous isotropic modified couple stress thermoelastic solid with multi-dual-phase-lag heat transfer and two temperature

  • Lata, Parveen;Kaur, Harpreet
    • Steel and Composite Structures
    • /
    • v.38 no.2
    • /
    • pp.213-221
    • /
    • 2021
  • The objective of this paper is to study the deformation in a homogeneous isotropic thermoelastic solid using modified couple stress theory subjected to ramp-type thermal source with two temperature. The advantage of this theory is the involvement of only one material length scale parameter which can determine the size effects. Laplace and Fourier transform technique is applied to obtain the solutions of the governing equations. The components of displacement, conductive temperature, stress components and couple stress are obtained in the transformed domain. A numerical inversion technique has been used to obtain the solutions in the physical domain. The effect of two temperature is depicted graphically on the resulted quantities. Numerical results show that the proposed model can capture the size effects of microstructures.