• 제목/요약/키워드: multi-perceptron

검색결과 474건 처리시간 0.038초

수피 특징 추출을 위한 상용 DCNN 모델의 비교와 다층 퍼셉트론을 이용한 수종 인식 (Comparison of Off-the-Shelf DCNN Models for Extracting Bark Feature and Tree Species Recognition Using Multi-layer Perceptron)

  • 김민기
    • 한국멀티미디어학회논문지
    • /
    • 제23권9호
    • /
    • pp.1155-1163
    • /
    • 2020
  • Deep learning approach is emerging as a new way to improve the accuracy of tree species identification using bark image. However, the approach has not been studied enough because it is confronted with the problem of acquiring a large volume of bark image dataset. This study solved this problem by utilizing a pretrained off-the-shelf DCNN model. It compares the discrimination power of bark features extracted by each DCNN model. Then it extracts the features by using a selected DCNN model and feeds them to a multi-layer perceptron (MLP). We found out that the ResNet50 model is effective in extracting bark features and the MLP could be trained well with the features reduced by the principal component analysis. The proposed approach gives accuracy of 99.1% and 98.4% for BarkTex and Trunk12 datasets respectively.

Downscaling of MODIS Land Surface Temperature to LANDSAT Scale Using Multi-layer Perceptron

  • Choe, Yu-Jeong;Yom, Jae-Hong
    • 한국측량학회지
    • /
    • 제35권4호
    • /
    • pp.313-318
    • /
    • 2017
  • Land surface temperature is essential for monitoring abnormal climate phenomena such as UHI (Urban Heat Islands), and for modeling weather patterns. However, the quality of surface temperature obtained from the optical space imagery is affected by many factors such as, revisit period of the satellite, instance of capture, spatial resolution, and cloud coverage. Landsat 8 imagery, often used to obtain surface temperatures, has a high resolution of 30 meters (100 meters rearranged to 30 meters) and a revisit frequency of 16 days. On the contrary, MODIS imagery can be acquired daily with a spatial resolution of about 1 kilometer. Many past attempts have been made using both Landsat and MODIS imagery to complement each other to produce an imagery of improved temporal and spatial resolution. This paper applied machine learning methods and performed downscaling which can obtain daily based land surface temperature imagery of 30 meters.

Predicting the compressive strength of cement mortars containing FA and SF by MLPNN

  • Kocak, Yilmaz;Gulbandilar, Eyyup;Akcay, Muammer
    • Computers and Concrete
    • /
    • 제15권5호
    • /
    • pp.759-770
    • /
    • 2015
  • In this study, a multi-layer perceptron neural network (MLPNN) prediction model for compressive strength of the cement mortars has been developed. For purpose of constructing this model, 8 different mixes with 240 specimens of the 2, 7, 28, 56 and 90 days compressive strength experimental results of cement mortars containing fly ash (FA), silica fume (SF) and FA+SF used in training and testing for MLPNN system was gathered from the standard cement tests. The data used in the MLPNN model are arranged in a format of four input parameters that cover the FA, SF, FA+SF and age of samples and an output parameter which is compressive strength of cement mortars. In the model, the training and testing results have shown that MLPNN system has strong potential as a feasible tool for predicting 2, 7, 28, 56 and 90 days compressive strength of cement mortars.

ART와 다층 퍼셉트론을 이용한 얼굴인식 시스템의 성능분석 (Performance Analysis of Face Image Recognition System Using A R T Model and Multi-layer perceptron)

  • 김영일;안민옥
    • 전자공학회논문지B
    • /
    • 제30B권2호
    • /
    • pp.69-77
    • /
    • 1993
  • Automatic image recognition system is essential for a better man-to machine interaction. Because of the noise and deformation due to the sensor operation, it is not simple to build an image recognition system even for the fixed images. In this paper neural network which has been reported to be adequate for pattern recognition task is applied to the fixed and variational(rotation, size, position variation for the fixed image)recognition with a hope that the problems of conventional pattern recognition techniques are overcome. At fixed image recognition system. ART model is trained with face images obtained by camera. When recognizing an matching score. In the test when wigilance level 0.6 - 0.8 the system has achievel 100% correct face recognition rate. In the variational image recognition system, 65 invariant moment features sets are taken from thirteen persons. 39 data are taken to train multi-layer perceptron and other 26 data used for testing. The result shows 92.5% recognition rate.

  • PDF

공작기계 컨트롤러용 고속 신경망 필터의 기초설계 (The Basic Design of High Speed Neural Network Filter for Application of Machine Tools Controller)

  • 김진선;신우철;홍준희
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 추계학술대회
    • /
    • pp.125-130
    • /
    • 2003
  • This Paper describes a Nonlinear adoptive noise canceller using Neural Network for Machine Tools Controller System. Back-Propagation Learning Algorithm based MLP (Multi Layer Perceptron)is used an adaptive filters. In this Paper. it assume that the noise of primary input in the adaptive noise canceller is not the same characteristic as that of the reference input. Experimental results show that the neural network base noise canceller outperforms the linear noise canceller. Especially to make noise cancel close to realtime, Primary Input is divided by Unit and each divided pan is processed for very short time than all the processed data are unified to whole data.

  • PDF

Sensitivity analysis of weights in multi-layer perceptron realizing continuous mappings

  • Choi, Chong-Ho;Choi, Jin-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.1377-1382
    • /
    • 1990
  • In Multi-Layer Perceptron (MLP) which realizes continuous mappings, the output errors is directly affected by the weight errors which may be caused by the limited precision of digital or analog hardware in implementations. So, it is important to study the sensitivity due to the perturbation of connection weights between neurons. In this paper, we derive a sensitivity function to the statistical weight perturbations in MLP with differentiable activation functions. This sensitivity function can be regarded as an ensemble average of deterministic sensitivity measures due to the perturbations of weights. Hence, this sensitivity function can be used as the criteria for selecting weights with the minimum sensitivity among possible sets of connection weights in MLP. For the verification of the validity of the proposed sensitivity function, computer simulations have been performed and through the simulations we find good agreement between the theoretical and simulation results.

  • PDF

단어사전과 다층 퍼셉트론을 이용한 고립단어 인식 알고리듬 (Isolated Word Recognition Algorithm Using Lexicon and Multi-layer Perceptron)

  • 이기희;임인칠
    • 전자공학회논문지B
    • /
    • 제32B권8호
    • /
    • pp.1110-1118
    • /
    • 1995
  • Over the past few years, a wide variety of techniques have been developed which make a reliable recognition of speech signal. Multi-layer perceptron(MLP) which has excellent pattern recognition properties is one of the most versatile networks in the area of speech recognition. This paper describes an automatic speech recognition system which use both MLP and lexicon. In this system., the recognition is performed by a network search algorithm which matches words in lexicon to MLP output scores. We also suggest a recognition algorithm which incorperat durational information of each phone, whose performance is comparable to that of conventional continuous HMM(CHMM). Performance of the system is evaluated on the database of 26 vocabulary size from 9 speakers. The experimental results show that the proposed algorithm achieves error rate of 7.3% which is 5.3% lower rate than 12.6% of CHMM.

  • PDF

다층 퍼셉트론 신경망의 역전파 학습 시각화 (Visualization of Multi Layer Perceptron Backpropagation Learning)

  • 오주민;최용석
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2017년도 제55차 동계학술대회논문집 25권1호
    • /
    • pp.19-20
    • /
    • 2017
  • 인공지능이 사회적으로 대두되면서 많은 양의 관련 연구가 시작되고 있다. 본 논문에서는 다층 퍼셉트론 신경망에서 역전파 학습의 진행 과정을 시각화 하는 것을 목표로 하고 있다. 다층 퍼셉트론 신경망은 학습의 진행 과정과 그 방식은 잘 알려져 있으나 각 신경의 값이 어떻게 변화되어 가는 지는 눈에 보이지 않는다. 이러한 과정에 대해 시각화를 통해 값이 변하는 과정을 눈으로 쉽게 관찰할 수 있도록 하는 것이 이 논문의 목표이다. 본 연구결과는 향후 다층 퍼셉트론 신경망을 기반으로 하는 다른 모델의 시각화에 대한 기초자료로 활용될 수 있을 것이다.

  • PDF

인서트 자동검사를 위한 시각인식 알고리즘 (A Machine Vision Algorithm for the Automatic Inspection of Inserts)

  • 이문규;신승호
    • 제어로봇시스템학회논문지
    • /
    • 제4권6호
    • /
    • pp.795-801
    • /
    • 1998
  • In this paper, we propose a machine vision algorithm for inspecting inserts which are used for milling and turning operations. Major defects of the inserts are breakage and crack on insert surfaces. Among the defects, breakages on the face of the inserts can be detected through three stages of the algorithm developed in this paper. In the first stage, a multi-layer perceptron is used to recognize the inserts being inspected. Edge detection of the insert image is performed in the second stage. Finally, in the third stage breakages on the insert face are identified using Hough transform. The overall algorithm is tested on real specimens and the results show that the algorithm works fairly well.

  • PDF

디지털 제어기용 적응 신경망 필터의 설계 및 성능평가 (Design and Performance Evaluation of a Neural Network based Adaptive Filter for Application of Digital Controller)

  • 김진선;신우철;홍준희
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 추계학술대회 논문집
    • /
    • pp.345-351
    • /
    • 2004
  • This Paper describes a nonlinear adaptive noise filter using neural network for digital controller system. Back-Propagation Learning Algorithm based MLP (Multi Layer Perceptron)is used an adaptive filters. In this paper. it assume that the noise of primary input in the adaptive noise canceller is not the same characteristic as that of the reference input. Experimental reaults show that the neural network base noise canceller outperforms the linear noise canceller. Especially to make noise cancel close to realtime, Primary input is divided by unit and each divided part is processed for very short time than all the processed data are unified to whole data.

  • PDF