• Title/Summary/Keyword: multi-path routing

Search Result 235, Processing Time 0.028 seconds

Low-delay Node-disjoint Multi-path Routing using Complementary Trees for Industrial Wireless Sensor Networks

  • Liu, Luming;Ling, Zhihao;Zuo, Yun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.11
    • /
    • pp.2052-2067
    • /
    • 2011
  • Complementary trees are two spanning trees rooted at the sink node satisfying that any source node's two paths to the sink node on the two trees are node-disjoint. Complementary trees routing strategy is a special node-disjoint multi-path routing approach. Several complementary trees routing algorithms have been proposed, in which path discovery methods based on depth first search (DFS) or Dijkstra's algorithm are used to find a path for augmentation in each round of path augmentation step. In this paper, a novel path discovery method based on multi-tree-growing (MTG) is presented for the first time to our knowledge. Based on this path discovery method, a complementary trees routing algorithm is developed with objectives of low average path length on both spanning trees and low complexity. Measures are employed in our complementary trees routing algorithm to add a path with nodes near to the sink node in each round of path augmentation step. The simulation results demonstrate that our complementary trees routing algorithm can achieve low average path length on both spanning trees with low running time, suitable for wireless sensor networks in industrial scenarios.

Cluster-Based Multi-Path Routing for Multi-Hop Wireless Networks (무선 다중 홉 네트워크에서의 클러스터 기반 다중 경로 라우팅)

  • Zhang, Jie;Jeong, Choong-Kyo;Lee, Goo-Yeon;Kim, Hwa-Jong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.6
    • /
    • pp.114-121
    • /
    • 2008
  • Multi-path routing has been studied widely in wired networks. Multi-path routing is known to increase end-to-end throughput and provide load balancing in wired networks. However, its advantage is not obvious in wireless multi-hop network because the traffic along the multiple paths may interfere with adjacent paths. In the paper, we introduce a new multi-path routing scheme, Cluster-Based Multi-Path Routing for multi-hop wireless networks. The main idea of the proposed routing scheme is to extend the hop-by-hop multi-path to a cluster-by-cluster multi-path. In cluster network, each cluster can work independently from other clusters and hence reduce interference. The purpose of the proposed scheme is to find a less interfering path for wireless multi-hop networks. We also showed the throughput improvement of the proposed scheme through simulations.

A Novel Multi-Path Routing Algorithm Based on Clustering for Wireless Mesh Networks

  • Liu, Chun-Xiao;Zhang, Yan;Xu, E;Yang, Yu-Qiang;Zhao, Xu-Hui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.4
    • /
    • pp.1256-1275
    • /
    • 2014
  • As one of the new self-organizing and self-configuration broadband networks, wireless mesh networks are being increasingly attractive. In order to solve the load balancing problem in wireless mesh networks, this paper proposes a novel multi-path routing algorithm based on clustering (Cluster_MMesh) for wireless mesh networks. In the clustering stage, on the basis of the maximum connectivity clustering algorithm and k-hop clustering algorithm, according to the idea of maximum connectivity, a new concept of node connectivity degree is proposed in this paper, which can make the selection of cluster head more simple and reasonable. While clustering, the node which has less expected load in the candidate border gateway node set will be selected as the border gateway node. In the multi-path routing establishment stage, we use the intra-clustering multi-path routing algorithm and inter-clustering multi-path routing algorithm to establish multi-path routing from the source node to the destination node. At last, in the traffic allocation stage, we will use the virtual disjoint multi-path model (Vdmp) to allocate the network traffic. Simulation results show that the Cluster_MMesh routing algorithm can help increase the packet delivery rate, reduce the average end to end delay, and improve the network performance.

An Optimized Node-Disjoint Multi-path Routing Protocol for Multimedia Data Transmission over Wireless Sensor Network (무선 센서 네트워크에서의 멀티미디어 데이터 전송을 위한 최적의 노드 비 겹침 다중경로 탐색 프로토콜)

  • Jung, Sung-Rok;Lee, Jeong-Hoon;Roh, Byeong-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.11A
    • /
    • pp.1021-1033
    • /
    • 2008
  • In recent years, the growing interest in wireless sensor network has resulted in thousands of publications. Most of this research is concerned with delivering raw data such as temperature, pressure, or humidity. Recently, the focus of sensor network paradigm is changing for delivering multimedia contents. However, most existing routing protocols are not very practical for transmitting multimedia contents in resource constrained sensor networks. In this paper, we propose an optimized node-disjoint multi-path routing protocol for throughput enhancement and load balancing. We focused on how to allocate traffic to independent multiple end-to-end routes. Decentralized transmission using our node-disjoint multi-path routing scheme results in bandwidth aggregation and throughput enhancement. In addition, our scheme provides ways to remove link-joint routes for decreasing routing overhead.

Associativity-Based On-Demand Multi-Path Routing In Mobile Ad Hoc Networks

  • Rehman, Shafqat Ur;Song, Wang-Cheol;Park, Gyung-Leen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.5
    • /
    • pp.475-491
    • /
    • 2009
  • This paper is primarily concerned with multi-path routing in Mobile Ad hoc Networks (MANETs). We propose a novel associativity-based on-demand source routing protocol for MANETs that attempts to establish relatively stable path(s) between the source and the destination. We introduce a new notion for gauging the temporal and spatial stability of nodes, and hence the paths interconnecting them. The proposed protocol is compared with other unipath (DSDV and AODV) and multi-path (AOMDV) routing protocols. We investigate the performance in terms of throughput, normalized routing overhead, packet delivery ratio etc. All on-demand protocols show good performance in mobile environments with less traffic overhead compared to proactive approaches, but they are prone to longer end-to-end delays due to route discovery and maintenance.

A Cost-Aware Multi-path DSDV Routing Protocol in Wireless Mesh Networks (무선 메쉬 네트워크에서 비용 인지 다중 경로 DSDV 라우팅 프로토콜)

  • Lee, Seong-Woong;Chung, Yun-Won
    • The KIPS Transactions:PartC
    • /
    • v.15C no.4
    • /
    • pp.289-296
    • /
    • 2008
  • In wireless mesh network, studies on routing protocols have been actively carried out recently, and hop count is used as a major routing metric in destination-sequenced distance-vector (DSDV) routing protocol, which is a representative proactive routing protocol. Although hop-by-hop multi-path (HMP) DSDV and enhanced HMP (EHMP) DSDV routing protocols perform routing by considering both hop count and residual bandwidth within one hop distance nodes, it has a shortcoming that routing is carried out via non-optimal path from the aspect of end-to-end routing. In order to overcome the shortcoming, a cost-aware multi-path (CAMP) DSDV routing protocol is proposed in this paper, which considers hop count and end-to-end minimum residual bandwidth. Simulation results based on NS-2 show that the proposed routing protocol performs better than DSDV, HMP DSDV, and EHMP DSDV protocols from the aspect of throughput and packet delivery ratio, by appropriately using hop count and end-to-end minimum residual bandwidth information and has the same number of management messages with HMP DSDV and EHMP DSDV protocols.

Interference Aware Multipath Routing in Multi-rate Wireless Sensor Networks

  • Lee, Kang Gun;Park, Hyung Kun
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.8
    • /
    • pp.909-914
    • /
    • 2015
  • In wireless sensor networks, sensor nodes have a short transmission range and data is transferred from source to destination node using the multi-hop transmission. Sensor nodes are powered by battery and the link qualities are different, and the routing protocol in the wireless sensor network is one of the important technical issues. Multipath routing was proposed to reduce the data congestion and increase data throughput. In the multipath routing, however, each path can be interfered by the other path, and it can aggravate network performance. In this paper, we propose the multipath routing scheme for multi-rate wireless sensor networks. The multipath routing selects transmission paths to minimize transmission delay and path interference.

CAMR: Congestion-Aware Multi-Path Routing Protocol for Wireless Mesh Networks

  • Jang, Seowoo;Kang, Seok-Gu;Yoon, Sung-Guk
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.411-419
    • /
    • 2017
  • The Wireless Mesh Network (WMN) is a multi-hop wireless network consisting of mesh routers and clients, where the mesh routers have minimal mobility and form the backbone. The WMN is primarily designed to access outer network to mesh clients through backhaul gateways. As traffic converges on the gateways, traffic hotspots are likely to form in the neighborhood of the gateways. In this paper, we propose Congestion Aware Multi-path Routing (CAMR) protocol to tackle this problem. Upon congestion, CAMR divides the clients under a mesh STA into two groups and returns a different path for each group. The CAMR protocol triggers multi-path routing in such a manner that the packet reordering problem is avoided. Through simulations, we show that CAMR improves the performance of the WMN in terms of throughput, delay and packet drop ratio.

A Study on Effective ATM Multi-Path Routing Method (효율적인 ATM 다중 경로 라우팅 기법에 관한 연구)

  • Go, Jang-Hyeok;Lee, Dong-Ho
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.3
    • /
    • pp.681-691
    • /
    • 1999
  • It was already proved that ATM stability and flexibility of service application, but because of the various characteristics of traffics and the QoS on user demand caused by them, there are a lot of researches for traffic management method. However, there are a few of researches for ATM routing method acting on traffic management practically. In this paper, we focus on multi-path routing method transporting cells with multiple paths and compare this method with existing single path routing method and analyze multi-path routing method into three elements with simple formula and propose anew methods improving the performance of ATM routing and simulate these methods.

  • PDF

QoS Support to Design for IEEE802.11e based in Wireless Mesh Networks (IEEE802.11e를 기반으로 한 Wireless Mesh Networks에서 QoS 향상 방법 설계)

  • Seo, Hyung-Yoon;Kim, Dong-Hyun;Kim, Jong-Deok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.702-704
    • /
    • 2010
  • Wireless LAN(Local Area Network) environment to support QoS in IEEE802.11 Working Group has standardized on the IEEE 802.11e. IEEE 802.11e EDCA channel access of the high priority traffic as by raising the probability of a chance to support QoS. This is a high priority traffic than low priority traffic, channel access is not necessarily the first. Therefore, as all traffic channels, if you have the same routing path, lower priority traffic on the performance of high priority traffic, sustainable impact. As a result, EDCA, such as voice or video to guarantee QoS for multimedia applications, follow the crowd. In this paper, to solve these problems by using Multi-Interface Multi-Path Routing Algorithm is proposed. Interface for each use in IEEE 802.11e EDCA Access Category much differently by each of the Routing Path for high priority traffic and guarantee QoS.

  • PDF