• 제목/요약/키워드: multi-object detection

검색결과 236건 처리시간 0.063초

A method based on Multi-Convolution layers Joint and Generative Adversarial Networks for Vehicle Detection

  • Han, Guang;Su, Jinpeng;Zhang, Chengwei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권4호
    • /
    • pp.1795-1811
    • /
    • 2019
  • In order to achieve rapid and accurate detection of vehicle objects in complex traffic conditions, we propose a novel vehicle detection method. Firstly, more contextual and small-object vehicle information can be obtained by our Joint Feature Network (JFN). Secondly, our Evolved Region Proposal Network (EPRN) generates initial anchor boxes by adding an improved version of the region proposal network in this network, and at the same time filters out a large number of false vehicle boxes by soft-Non Maximum Suppression (NMS). Then, our Mask Network (MaskN) generates an example that includes the vehicle occlusion, the generator and discriminator can learn from each other in order to further improve the vehicle object detection capability. Finally, these candidate vehicle detection boxes are optimized to obtain the final vehicle detection boxes by the Fine-Tuning Network(FTN). Through the evaluation experiment on the DETRAC benchmark dataset, we find that in terms of mAP, our method exceeds Faster-RCNN by 11.15%, YOLO by 11.88%, and EB by 1.64%. Besides, our algorithm also has achieved top2 comaring with MS-CNN, YOLO-v3, RefineNet, RetinaNet, Faster-rcnn, DSSD and YOLO-v2 of vehicle category in KITTI dataset.

차량 탑승 인원 감지를 위한 트리거 기술에 관한 연구 (A Study on the Trigger Technology for Vehicle Occupant Detection)

  • 이동진;이지원;장종욱;장성진
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 춘계학술대회
    • /
    • pp.120-122
    • /
    • 2021
  • 현재 국내외 자동차 수요가 증가하게 되면서 차량탑승 인원은 적어지고 차량 수는 증가하는 추세이다. 이는 교통체증이 더 심해지게 되는 주요 원인이 된다. 이를 해결하기 위해 다인승 전용차로, HOV(High-occupancy vehicle) lane을 운영하고 있지만, 이용 조건을 무시하고 불법으로 이용하는 사람들이 계속 증가하고 있다. 이러한 불법행위를 경찰이 육안으로 판단하여 단속하기 때문에 단속 정확도도 낮으며 효율이 떨어진다. 본 논문에서는 이와 같은 문제를 해결하기 위해 컴퓨터 비전을 이용한 영상 분석 기술을 이용해서 보다 효율적인 탐지를 할 수 있는 시스템 설계를 제안한다. 기존의 연구되었던 차량 탐지 방법을 개선하여 영상 안에서 트리거를 설정하여 탐지 객체가 선정된 후 대상에 대해서 집중적으로 영상 분석을 진행할 수 있게 설계했으며 딥러닝 객체 인식 모델인 YOLO 모델을 사용하여 실시간 객체 탐지와 정확한 신호를 얻기 위해 영상 내 bounding box로 판단하는 것이 아닌 중심점의 이동량을 이용하는 방법을 제안한다.

  • PDF

철도 승강장 승객안전을 위한 비전기반 물체 검지 알고리즘 연구 (Study on Vision based Object Detection Algorithm for Passenger' s Safety in Railway Station)

  • 오세찬;박성혁;정우태
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.553-558
    • /
    • 2008
  • Advancement in information technology have enabled applying vision sensor to railway, such as CCTV. CCTV has been widely used in railway application, however the CCTV is a passive system that provide limited capability to maintain safety from boarding platform. The station employee should monitor continuously CCTV monitors. Therefore immediate recognition and response to the situation is difficultin emergency situation. Recently, urban transit operators are pursuing applying an unattended station operation system for their cost reduction. Therefore, an intelligent monitoring system is need for passenger's safety in railway. The paper proposes a vision based monitoring system and object detection algorithm for passenger's safety in railway platform. The proposed system automatically detects accident in platform and analyzes level of danger using image processing technology. The system uses stereo vision technology with multi-sensors for minimizing detection error in various railway platform conditions.

  • PDF

Robust Multi-person Tracking for Real-Time Intelligent Video Surveillance

  • Choi, Jin-Woo;Moon, Daesung;Yoo, Jang-Hee
    • ETRI Journal
    • /
    • 제37권3호
    • /
    • pp.551-561
    • /
    • 2015
  • We propose a novel multiple-object tracking algorithm for real-time intelligent video surveillance. We adopt particle filtering as our tracking framework. Background modeling and subtraction are used to generate a region of interest. A two-step pedestrian detection is employed to reduce the computation time of the algorithm, and an iterative particle repropagation method is proposed to enhance its tracking accuracy. A matching score for greedy data association is proposed to assign the detection results of the two-step pedestrian detector to trackers. Various experimental results demonstrate that the proposed algorithm tracks multiple objects accurately and precisely in real time.

영상처리와 센서융합을 활용한 지능형 6족 이동 로봇 (Intelligent Hexapod Mobile Robot using Image Processing and Sensor Fusion)

  • 이상무;김상훈
    • 제어로봇시스템학회논문지
    • /
    • 제15권4호
    • /
    • pp.365-371
    • /
    • 2009
  • A intelligent mobile hexapod robot with various types of sensors and wireless camera is introduced. We show this mobile robot can detect objects well by combining the results of active sensors and image processing algorithm. First, to detect objects, active sensors such as infrared rays sensors and supersonic waves sensors are employed together and calculates the distance in real time between the object and the robot using sensor's output. The difference between the measured value and calculated value is less than 5%. This paper suggests effective visual detecting system for moving objects with specified color and motion information. The proposed method includes the object extraction and definition process which uses color transformation and AWUPC computation to decide the existence of moving object. We add weighing values to each results from sensors and the camera. Final results are combined to only one value which represents the probability of an object in the limited distance. Sensor fusion technique improves the detection rate at least 7% higher than the technique using individual sensor.

Small-Scale Object Detection Label Reassignment Strategy

  • An, Jung-In;Kim, Yoon;Choi, Hyun-Soo
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권12호
    • /
    • pp.77-84
    • /
    • 2022
  • 본 논문은 객체 위치식별 알고리즘의 성능을 향상하기 위한 레이블 재할당 방법을 제안한다. 제안한 방법은 추론 단계와 재할당 단계로 구분한다. 추론 단계에서는 학습된 모델로부터 사전 지정된 크기에 따라 다중 스케일 추론을 수행한 뒤, 이를 마스킹한 영상을 다시 한번 추론하여 강인한 클래스 종류의 추론 결과를 얻는다. 재할당 단계에서는 박스간의 IoU를 계산하여 중복 박스를 제거하고, 박스와 클래스의 빈도를 계산하여 지배적 클래스를 다시 할당하였다. 제안한 방법을 검증하기 위하여 공사현장 안전장비 인식 영상 데이터 세트에 레이블 재할당 방법을 적용하고 이를 YOLOX-L 객체 탐지 모델에서 학습하였다. 실험 결과 적용 전 대비 mAP가 3.9% 향상하여 51.07%를 달성하였으며 AP_S를 3배 이상 향상하여 14.53%를 달성하였다. 실험 결과를 통해 레이블 재할당 알고리즘이 더 우수한 성능의 모델을 훈련해 냄을 확인하였다.

샴 네트워크를 사용하여 추적 레이블을 사용하지 않는 다중 객체 검출 및 추적기 학습에 관한 연구 (Training of a Siamese Network to Build a Tracker without Using Tracking Labels)

  • 강정규;송유승;민경욱;최정단
    • 한국ITS학회 논문지
    • /
    • 제21권5호
    • /
    • pp.274-286
    • /
    • 2022
  • 이동객체 추적은 컴퓨터 비전 분야에서 오랜 시간 동안 연구가 진행되어 온 분야로 자율주행이나 운전 보조 시스템 등의 시스템에서 아주 중요한 역할을 수행하고 있다. 이동객체 추적 기술은 일반적으로 객체를 검출하는 검출기와 검출된 객체를 추적하는 추적기의 결합으로 이루어져 있다. 검출기는 다양한 데이터셋이 공개되어 사용되고 있기 때문에 쉽게 좋은 모델을 학습할 수 있지만, 추적기의 경우 상대적으로 공개된 데이터셋도 적고 직접 데이터셋을 구성하는 것도 검출기 데이터셋에 비해 굉장히 오랜 시간을 소요한다. 이에 검출기를 따로 개발하고, 별도의 추적기를 학습 기반이 아닌 방식을 활용하여 개발하는 경우가 많은데 이런 경우 두 개의 시스템이 차례로 작동하게 되어 전체 시스템의 속도를 느리게 하고 앞단의 검출기의 성능이 변할 때마다 별도로 추적기 또한 조정해줘야 한다는 단점이 있다. 이에 본 연구는 검출용 데이터셋만을 사용하여 검출과 추적을 동시에 수행하는 모델을 구성하는 방법을 제안한다. 데이터 증강 기술과 샴 네트워크를 사용하여 단일 이미지에서 객체를 검출 및 추적하는 방법을 연구하였다. 공개 데이터셋에 실험을 진행하여 학습 결과 높은 속도로 작동하는 이동객체 검출 및 추적기를 학습할 수 있음을 검증하였다.

ADAS용 다중화각 카메라를 이용한 객체 인식 향상 (Improved Object Recognition using Multi-view Camera for ADAS)

  • 박동훈;김학일
    • 방송공학회논문지
    • /
    • 제24권4호
    • /
    • pp.573-579
    • /
    • 2019
  • 완전한 자율 주행에 이르기 위해서는 주변 환경을 인지하는 인지 능력이 사람보다 뛰어나야 한다. 자율 주행에서 주로 사용되는 $60^{\circ}$ 협각, $120^{\circ}$ 광각 카메라는 시야각에 따른 각각의 단점이 존재한다. 본 논문의 목적은 광각, 협각 카메라가 가진 각각의 단점을 극복하기 위하여, 다중화각 차량 전방 카메라 시스템을 이용하여 더 넓은 영역의 전방을 대상으로 더 정확히 객체를 인식할 수 있는 심층신경망 알고리즘을 개발하는 것이다. 광각, 협각 카메라로 취득된 데이터의 종횡비를 분석해 SSD(Single Shot Detector) 알고리즘을 수정하였고, 취득된 데이터를 학습하여 단안 카메라만을 사용할 때 보다 높은 성능을 달성하였다.

이중계층구조 파티클 샘플링을 사용한 다중객체 검출 및 추적 (Multi-Object Detection and Tracking Using Dual-Layer Particle Sampling)

  • 정경원;김나현;이승원;백준기
    • 전자공학회논문지
    • /
    • 제51권9호
    • /
    • pp.139-147
    • /
    • 2014
  • 본 논문에서는 다중객체 검출과 동시에 추적을 수행하는 이중계층구조의 파티클 샘플링을 제안한다. 제안된 방법은 다중 객체 검출을 위한 상위 계층 파티클 샘플링과 검출된 객체의 추적을 위한 하위 계층 파티클 샘플링으로 구성된다. 상위 계층에서는 빠른 객체 검출을 위해 슬라이딩 윈도우 대신 움직임 추정 기반의 부모 파티클 (parent particles; PP) 윈도우를 사용하여, 이동 객체 주위로 리샘플링된 파티클을 통해 객체를 검출한다. 하위 계층에서는 상위 계층에서 검출한 객체의 객체영역에 자식 파티클 (child particles; CP)을 생성하여 해당 객체를 추적한다. 실험결과를 통해 비디오 시스템에서 기존 객체 검출 방법보다 빠른 검출이 가능하고, 다중 객체를 효과적으로 추적할 수 있음을 확인하였다.

3D 데이터 기반 영역의 stream data간 공간 mapping 기능 활용 객체 검출 라이브러리에 대한 연구 (Research on Object Detection Library Utilizing Spatial Mapping Function Between Stream Data In 3D Data-Based Area)

  • 석경휴;이소행
    • 한국전자통신학회논문지
    • /
    • 제19권3호
    • /
    • pp.551-562
    • /
    • 2024
  • 본 연구는 이동 객체 추출 및 추적 방법 및 장치에 관한 것으로, 특히 인접 영상 간의 차영상을 이용하여 객체를 추출하고, 추출된 객체의 위치정보를 지속적으로 전달함으로써 적어도 하나의 이동 객체의 정확한 위치정보를 토대로 이동 객체를 추적하는 이동 객체 추출 및 추적 방법 및 장치에 관한 것이다. 사람과 컴퓨터의 상호작용의 표현에서 시작된 사람추적은 로봇학습, 객체의 카운팅, 감시 시스템 등의 많은 응용분야에서 사용되고 있으며, 특히 보안 시스템분야에서 카메라를 이용하여 사람을 인식하고 추적하여 위법행위를 자동적으로 찾아낼 수 있는 감시 시스템 개발의 중요성이 나날이 커져 가고 있다.