• 제목/요약/키워드: multi-mobile robot system

검색결과 114건 처리시간 0.029초

Tracing Algorithm for Intelligent Snake-like Robot System

  • Choi, Woo-Kyung;Kim, Seong-Joo;Jeon, Hong-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.486-491
    • /
    • 2005
  • There come various types of robot with researches for mobile robot. This paper introduces the multi-joint snake robot having 16 degree of freedom and composing of eight-axis. The biological snake robot uses the forward movement friction and the proposed artificial snake robot uses the un-powered wheel instead of the body of snake. To determine the enable joint angle of each joint, the controller inputs are considered such as color and distance using PC Camera and ultra-sonic sensor module, respectively. The movement method of snake robot is sequential moving from head to tail through body. The target for movement direction is decided by a certain article be displayed in the PC Camera. In moving toward that target, if there is any obstacle then the snake robot can avoid by itself. In this paper, we show the method of snake robot for tracing the target with experiment.

  • PDF

이동로봇용 적외선 레인지 파인더센서의 특성분석 및 비선형 편향 오차 보정에 관한 연구 (A study on the characteristic analysis and correction of non-linear bias error of an infrared range finder sensor for a mobile robot)

  • 하윤수;김헌희
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권5호
    • /
    • pp.641-647
    • /
    • 2003
  • The use of infrared range-finder sensor as the environment recognition system for mobile robot have the advantage of low sensing cost compared with the use of other vision sensor such as laser finder CCD camera. However, it is not easy to find the previous works on the use of infrared range-finder sensor for a mobile robot because of the non-linear characteristic of that. This paper describes the error due to non-linearity of a sensor and the correction of it using neural network. The neural network consists of multi-layer perception and Levenberg-Marquardt algorithm is applied to learning it. The effectiveness of the proposed algorithm is verified from experiment.

Appearance Based Object Identification for Mobile Robot Localization in Intelligent Space with Distributed Vision Sensors

  • Jin, TaeSeok;Morioka, Kazuyuki;Hashimoto, Hideki
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제4권2호
    • /
    • pp.165-171
    • /
    • 2004
  • Robots will be able to coexist with humans and support humans effectively in near future. One of the most important aspects in the development of human-friendly robots is to cooperation between humans and robots. In this paper, we proposed a method for multi-object identification in order to achieve such human-centered system and robot localization in intelligent space. The intelligent space is the space where many intelligent devices, such as computers and sensors, are distributed. The Intelligent Space achieves the human centered services by accelerating the physical and psychological interaction between humans and intelligent devices. As an intelligent device of the Intelligent Space, a color CCD camera module, which includes processing and networking part, has been chosen. The Intelligent Space requires functions of identifying and tracking the multiple objects to realize appropriate services to users under the multi-camera environments. In order to achieve seamless tracking and location estimation many camera modules are distributed. They causes some errors about object identification among different camera modules. This paper describes appearance based object representation for the distributed vision system in Intelligent Space to achieve consistent labeling of all objects. Then, we discuss how to learn the object color appearance model and how to achieve the multi-object tracking under occlusions.

실시간 운영체제를 탑재한 원격 제어 로봇 시스템 (Remote Controlled Robot System using Real-Time Operating System)

  • 이태희;조상
    • 제어로봇시스템학회논문지
    • /
    • 제10권8호
    • /
    • pp.689-695
    • /
    • 2004
  • This paper presents a robot system that combines computer network and an autonomous mobile robot where RTOS is installed. We propose a wireless communication protocol, and also implement it on the RTOS of the robot system. Main controller of the robot processes the control program as a task type in the real-time operating system. Peripheral devices are driven by the device driver functions with the dependency of the hardware. Because the client and server program was implemented to support the multi-platforms by Java SDK and Java JMF, it is easy to analyze programs, maintain system, and correct the errors in the system. End-user can control a robot with a vision showing remote sight over the Internet in real time, and the robot is moved keeping away from the obstacles by itself and command of the server received from end-user at the local client.

Teleloperation of Field Mobile Manipulator with Wearable Haptic-based Multi-Modal User Interface and Its Application to Explosive Ordnance Disposal

  • Ryu Dongseok;Hwang Chang-Soon;Kang Sungchul;Kim Munsang;Song Jae-Bok
    • Journal of Mechanical Science and Technology
    • /
    • 제19권10호
    • /
    • pp.1864-1874
    • /
    • 2005
  • This paper describes a wearable multi-modal user interface design and its implementation for a teleoperated field robot system. Recently some teleoperated field robots are employed for hazard environment applications (e.g. rescue, explosive ordnance disposal, security). To complete these missions in outdoor environment, the robot system must have appropriate functions, accuracy and reliability. However, the more functions it has, the more difficulties occur in operation of the functions. To cope up with this problem, an effective user interface should be developed. Furthermore, the user interface is needed to be wearable for portability and prompt action. This research starts at the question: how to teleoperate the complicated slave robot easily. The main challenge is to make a simple and intuitive user interface with a wearable shape and size. This research provides multi-modalities such as visual, auditory and haptic sense. It enables an operator to control every functions of a field robot more intuitively. As a result, an EOD (explosive ordnance disposal) demonstration is conducted to verify the validity of the proposed wearable multi-modal user interface.

퍼지제어기를 이용한 무인차 항법제어 (Fuzzy Logic Controller for a Mobile Robot Navigation)

  • 정학영;이장규
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1991년도 하계학술대회 논문집
    • /
    • pp.713-716
    • /
    • 1991
  • This paper describes a methodology of mobile robot navigation which is designed to carry heavy payloads at high speeds to be used in FMS(Flexible Manufacturing System) without human control. Intelligent control scheme using fuzzy logic is applied to the navigation control. It analyzes sensor readings from multi-sensor system, which is composed of ultrasonic sensors, infrared sensors and odometer, for environment learning, planning, landmark detecting and system control. And it is implemented on a physical robot, AGV(Autonomous Guided Vehicle) which is a two-wheeled, indoor robot. An on-board control software is composed of two subsystems, i.e., AGV control subsystem and Sensor control subsystem. The results show that the navigation of the AGV is robust and flexible, and a real-time control is possible.

  • PDF

다층 환경에서의 라스트 마일 배송 서비스를 위한 경로 계획 및 엘리베이터 탑승 알고리즘 (Route Planning and Elevator Boarding Algorithms for Last Mile Delivery Service in Multi-floor Environments)

  • 이대규;강규리;김태진;심현철;정훈;김은혜
    • 로봇학회논문지
    • /
    • 제18권1호
    • /
    • pp.10-17
    • /
    • 2023
  • Recently, robots have been actively utilized for logistics and delivery services in various places such as restaurants, hotels, and hospitals. In addition, it provides a safer environment, convenience, and cost efficiency to the customers. However, when it comes to autonomous delivery in a multi-floor environment, the task is still challenging. Especially for wheeled mobile robots, it is necessary to deal with elevators to perform the last-mile delivery services. Therefore, we present a multi-floor route planning algorithm that enables a wheeled mobile robot to traverse an elevator for the delivery service. In addition, an elevator boarding mission algorithm was developed to perceive the drivable region within the elevator and generate a feasible path that is collision-free. The algorithm was tested with real-world experiments and was demonstrated to perform autonomous postal delivery service in a multi-floor building. We concluded that our study could contribute to building a stable autonomous driving robot system for a multi-floor environment.

이동로봇의 경로추적을 위한 2-입력 2-출력 ANFIS제어기 (2-Input 2-Output ANFIS Controller for Trajectory Tracking of Mobile Robot)

  • 이홍규
    • 한국항행학회논문지
    • /
    • 제16권4호
    • /
    • pp.586-592
    • /
    • 2012
  • 비선형 시스템을 제어하는 효과적인 방법으로 신경망과 연동된 퍼지구조를 적용한 ANFIS 제어기를 이용되고 있다. 전통적인 ANFIS에서는 다차원의 입력에도 불구하고 단일출력에 대한 공정을 모델링하고 제어 하는데 사용된다. 멤버쉽 함수의 파라미터는 최소자승예측과 역전파 알고리즘을 이용하여 조정된다. 이동로봇의 경우에는 좌측과 우측의 바퀴를 각각 구동할 필요가 있다. 본 논문에서는 이동로봇의 궤적을 추적하기 위하여 2-입력 2-출력을 가진 ANFIS제어기를 적용한 제어시스템 구조를 제안하였다. 시뮬레이션을 통하여 제안된 구조가 이동로봇에 대한 가능한 제어기임을 확인할 수 있었다.

동적 환경에서 이동로봇의 자율주행을 위한 혼합 심의/반응 제어구조의 구현 (Implementation of Hybrid Deliberative/Reactive Control Architecture for Autonomous Navigation of a Mobile Robot in Dynamic Environments)

  • 남화성;송재복
    • 제어로봇시스템학회논문지
    • /
    • 제12권2호
    • /
    • pp.154-160
    • /
    • 2006
  • Instantaneous reaction and intelligence are required for autonomous mobile robots to achieve multiple goals in the unpredictable and dynamic environments. Design of the appropriate control architecture and clear definitions of systems are needed to construct and control these robots. This research proposes the hybrid deliberative/reactive control architecture which consists of three layers and uses the method of software structure design. The highest layer, Deliberative Layer makes the overall run-time schedule for navigation and/or manipulation, and the middle layer, Task Execution Layer carries out various missions. The lowest layer, Reactive Layer enables a robot to react rapidly in the dynamic environment and controls the mechanical devices concurrently. This paper proposes independent system supervisors called Manager to reuse the modules so that the Manager supports common use of the system and multi-processing tasks. It is shown that the mobile robot based on the proposed control scheme can perform the basic navigation and cope with the dynamic obstacles reasonably well.

Effective Map Building Using a Wave Algorithm in a Multi-Robot System

  • Saitov, Dilshat;Umirov, Ulugbek;Park, Jung-Il;Choi, Jung-Won;Lee, Suk-Gyu
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권2호
    • /
    • pp.69-74
    • /
    • 2008
  • Robotics and artificial intelligence are components of IT that involve networks, electrical and electronic engineering, and wireless communication. We consider an algorithm for efficient navigation by building a precise map in a multi-robot system under conditions of limited and unlimited communications. The basis of the navigation algorithm described in this paper is a wave algorithm, which is effective in obtaining an accurate map. Each robot in a multi-robot system has its own task such as building a map for its local position. By combining their data into a shared map, the robots can actively seek to verify their relative locations. Using shared maps, they coordinate their exploration strategies to maximize exploration efficiency. To prove the efficiency of the proposed technique, we compared the final results with the results in $Burgard^{8}$ and $Stachniss.^{9-10}$ All of the simulation comparisons, which are shown as graphs, were made in four different environments.