• Title/Summary/Keyword: multi-mobile robot system

Search Result 114, Processing Time 0.03 seconds

Map Building and Localization Based on Wave Algorithm and Kalman Filter

  • Saitov, Dilshat;Choi, Jeong Won;Park, Ju Hyun;Lee, Suk Gyu
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.3 no.2
    • /
    • pp.102-108
    • /
    • 2008
  • This paper describes a mapping and localization based on wave algorithm[11] and Kalman filter for effective SLAM. Each robot in a multi robot system has its own task such as building a map for its local position. By combining their data into a shared map, the robot scans actively seek to verify their relative locations. For simultaneous localization the algorithm which is well known as Kalman Filter (KF) is used. For modelling the robot position we wish to know three parameters (x, y coordinates and its orientation) which can be combined into a vector called a state variable vector. The Kalman Filter is a smart way to integrate measurement data into an estimate by recognizing that measurements are noisy and that sometimes they should ignored or have only a small effect on the state estimate. In addition to an estimate of the state variable vector, the algorithm provides an estimate of the state variable vector uncertainty i.e. how confident the estimate is, given the value for the amount of error in it.

  • PDF

Research about the outdoor Mobile Robot for the Multi-agent system Control (MAS(Multi-Agent System) 제어를 위한 실외 이동로봇에 관한 연구)

  • Lee, Gum-Su;Oh, Sung-Nam;Yun, Dong-Woo;Kim, Kab-Il
    • Proceedings of the KIEE Conference
    • /
    • 2008.04a
    • /
    • pp.246-247
    • /
    • 2008
  • 본 논문에서는 군집간 제어를 위한 이동용 로봇제작과 로봇의 좌표인식, 방향을 찾기 위하여 GPS(Global Positioning System)수신 모듈과 Bluetooth송 수신기를 사용하였다. 실험에 쓰인 모든 이동용 로봇에 GPS수신기와 Bluetooth 송 수신기를 장착하고, GPS 수신기로부터 받은 blaster-이동로봇의 위치좌표를 Bluetooth통신 영역 내에 있는 모든 이동로봇에게 보내면 각 Slave-이동로봇은 Master이동로봇으로부터 받은 위치 좌표를 이용하여 blaster-이동로봇을 중심으로 상대적인 위치, 거리 유지, 진행방향을 계산한다. Master-이동로봇과 Slave-이동로봇 간의 실시간 통신과 일정거리를 유지함으로써 군집간 제어를 할 수 있다.

  • PDF

FPGA Board Implementation for an Embedded Machine-to-Machine Remote Control System (임베디드 M2M 원격제어 시스템을 위한 FPGA 보드 구현연구)

  • Sanjaa, Bold;Baek, Jong Sang;Jeong, Hwan Jong;Oh, Seung Chan;Jeong, Min A;Lee, Yeon-U;Lee, Seong Ro
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.05a
    • /
    • pp.501-503
    • /
    • 2013
  • This project presents a concept of mobile robots using prototypes, computing proposal oriented to embedded systems implementation. We implement our system using GPS module, Ultrasonic sensor(range sensors), H-bridge dual stepper control, DTMF(Dual-tone Multi-Frequency ) and LCD module. In this paper we construct a mechanical simple mobile robot model, which can measure the distance from obstacle with the aid of sensor and should able to control the speed of motor accordingly. Modules were interfaced with FPGA(Field Programmable Gate Array) controller for hardware implementation.

Passive RFID system for Efficient Area Coverage Algorithm (Passive RFID 시스템을 이용한 효율적인 영역 탐색 기법)

  • Lee, Sangyup;Lee, Choong-Yong;Jo, Wonse;Nam, Sang Yep;Kim, Dong-Han
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.2
    • /
    • pp.220-226
    • /
    • 2014
  • This paper proposes an enhanced fast scanning method for multi-agent robot system. Passive RFID tag can read and store the information within the range of recognizable RF tag reader. Based on this information of Passive RFID tag, the position of mobile robot can be estimated and at the same time, the efficiency of scanning process can be improved because it provides a scanning trace for other mobile robots. This paper proposes an dfficient motion planning algorithm for mobile robots in a smart floor environment.

Vision-based Real-time Lane Detection and Tracking for Mobile Robots in a Constrained Track Environment

  • Kim, Young-Ju
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.11
    • /
    • pp.29-39
    • /
    • 2019
  • As mobile robot applications increase in real life, the need of low cost autonomous driving are gradually increasing. We propose a novel vision-based real-time lane detection and tracking system that supports autonomous driving of mobile robots in constrained tracks which are designed considering indoor driving conditions of mobile robots. Considering the processing of lanes with various shapes and the pre-adjustment of operation parameters, the system structure with multi-operation modes are designed. In parameter tuning mode, thresholds of the color filter is dynamically adjusted based on the geometric property of the lane thickness. And in the unstable input mode of curved tracks and the stable input mode of straight tracks, lane feature pixels are adaptively extracted based on the geometric and temporal characteristics of the lanes and the lane model is fitted using the least-squared method. The track centerline is calculated using lane models and the motion model is simplified and tracked by a linear Kalman filter. In the driving experiments, it was confirmed that even in low-performance robot configurations, real-time processing produces the accurate autonomous driving in the constrained track.

Multi-Object Tracking using the Color-Based Particle Filter in ISpace with Distributed Sensor Network

  • Jin, Tae-Seok;Hashimoto, Hideki
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.1
    • /
    • pp.46-51
    • /
    • 2005
  • Intelligent Space(ISpace) is the space where many intelligent devices, such as computers and sensors, are distributed. According to the cooperation of many intelligent devices, the environment, it is very important that the system knows the location information to offer the useful services. In order to achieve these goals, we present a method for representing, tracking and human following by fusing distributed multiple vision systems in ISpace, with application to pedestrian tracking in a crowd. And the article presents the integration of color distributions into particle filtering. Particle filters provide a robust tracking framework under ambiguity conditions. We propose to track the moving objects by generating hypotheses not in the image plan but on the top-view reconstruction of the scene. Comparative results on real video sequences show the advantage of our method for multi-object tracking. Simulations are carried out to evaluate the proposed performance. Also, the method is applied to the intelligent environment and its performance is verified by the experiments.

Real time tracking of multiple humans for mobile robot application

  • Park, Joon-Hyuk;Park, Byung-Soo;Lee, Seok;Park, Sung-Kee;Kim, Munsang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.100.3-100
    • /
    • 2002
  • This paper presents the method for detection and tracking of multiple humans robustly in mobile platform. The perception of human is performed in real time through the processing of images acquired from a moving stereo vision system. We performed multi-cue integration such as human shape, skin color and depth information to detect and track each human in moving background scene. Human shape is measured by edge-based template matching on distance transformed image. Improving robustness for human detection, we apply the human face skin color in HSV color space. And we could increase the accuracy and the robustness in both detection and tracking by applying random sampling stochastic estimati...

  • PDF

Implementation of MAPF-based Fleet Management System (다중에이전트 경로탐색(MAPF) 기반의 실내배송로봇 군집제어 구현)

  • Shin, Dongcheol;Moon, Hyeongil;Kang, Sungkyu;Lee, Seungwon;Yang, Hyunseok;Park, Chanwook;Nam, Moonsik;Jung, Kilsu;Kim, Youngjae
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.4
    • /
    • pp.407-416
    • /
    • 2022
  • Multiple AMRs have been proved to be effective in improving warehouse productivity by eliminating workers' wasteful walking time. Although Multi-agent Path Finding (MAPF)-based solution is an optimal approach for this task, its deployment in practice is challenging mainly due to its imperfect plan-execution capabilities and insufficient computing resources for high-density environments. In this paper, we present a MAPF-based fleet management system architecture that robustly manages multiple robots by re-computing their paths whenever it is necessary. To achieve this, we defined four events that trigger our MAPF solver framework to generate new paths. These paths are then delivered to each AMR through ROS2 message topic. We also optimized a graph structure that effectively captures spatial information of the warehouse. By using this graph structure we can reduce computational burden while keeping its rescheduling functionality. With proposed MAPF-based fleet management system, we can control AMRs without collision or deadlock. We applied our fleet management system to the real logistics warehouse with 10 AMRs and observed that it works without a problem. We also present the usage statistic of adopting AMRs with proposed fleet management system to the warehouse. We show that it is useful over 25% of daily working time.

Simultaneous Driving System of Ultrasonic Sensors Using Codes (코드를 이용한 초음파 동시구동 시스템)

  • 김춘승;최병준;이상룡;이연정
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.11
    • /
    • pp.1028-1036
    • /
    • 2004
  • Ultrasonic sensors are widely used in mobile robot applications to recognize external environments by virtue that they are cheap, easy to use, and robust under varying lighting conditions. In most cases, a single ultrasonic sensor is used to measure the distance to an object based on time-of-flight (TOF) information, whereas multiple sensors are used to recognize the shape of an object, such as a comer, plane, or edge. However, the conventional sequential driving technique involves a long measurement time. This problem can be resolved by pulse coding of ultrasonic signals, which allows multi-sensors to be emitted simultaneously and adjacent objects to be distinguished. Accordingly, this paper presents a new simultaneous coded driving system for an ultrasonic sensor array for object recognition in autonomous mobile robots. The proposed system is designed and implemented. A micro-controller unit is implemented using a DSP, Polaroid 6500 ranging modules are modified for firing the coded signals, and a 5-channel coded signal generating board is made using a FPGA. To verify the proposed method, experiments were conducted in an environment with overlapping signals, and the flight distances fur each sensor were obtained from the received overlapping signals using correlations and conversion to a bipolar PCM-NRZ signal.

A Rule-based Integration of Neural Network Modules based on Cellular Automata for Sensory-Motor Controller (센서-모터 제어기를 위한 셀룰라 오토마타 기반 신경망 모듈의 규칙기반 결합)

  • Kim, Kyung-Joong;Song, Geum-Beom;Cho, Sung-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.1
    • /
    • pp.19-26
    • /
    • 2002
  • There are some difficulties to construct a sensory-motor controller for an autonomous mobile robot such as coordinating the mechanics and control system parts of the robot, and managing interaction with external environments. In previous research, we evolve the CAM-Brain, neural networks based on cellular automata, to control an autonomous mobile robot. In this paper, we propose the method of combining multi-modules evolved to do simple behavior in order to making more sophisticated behaviors because the controller composed of one neural network module is difficult to make complex behaviors. In experimental results, we can get the controller adapting to more complex environments by combining CAM-Brain modules evolved to do simple behavior by rule-based approach.