• Title/Summary/Keyword: multi-linear regression analysis

Search Result 121, Processing Time 0.026 seconds

A Climate Prediction Method Based on EMD and Ensemble Prediction Technique

  • Bi, Shuoben;Bi, Shengjie;Chen, Xuan;Ji, Han;Lu, Ying
    • Asia-Pacific Journal of Atmospheric Sciences
    • /
    • v.54 no.4
    • /
    • pp.611-622
    • /
    • 2018
  • Observed climate data are processed under the assumption that their time series are stationary, as in multi-step temperature and precipitation prediction, which usually leads to low prediction accuracy. If a climate system model is based on a single prediction model, the prediction results contain significant uncertainty. In order to overcome this drawback, this study uses a method that integrates ensemble prediction and a stepwise regression model based on a mean-valued generation function. In addition, it utilizes empirical mode decomposition (EMD), which is a new method of handling time series. First, a non-stationary time series is decomposed into a series of intrinsic mode functions (IMFs), which are stationary and multi-scale. Then, a different prediction model is constructed for each component of the IMF using numerical ensemble prediction combined with stepwise regression analysis. Finally, the results are fit to a linear regression model, and a short-term climate prediction system is established using the Visual Studio development platform. The model is validated using temperature data from February 1957 to 2005 from 88 weather stations in Guangxi, China. The results show that compared to single-model prediction methods, the EMD and ensemble prediction model is more effective for forecasting climate change and abrupt climate shifts when using historical data for multi-step prediction.

Performance Comparison of Mahalanobis-Taguchi System and Logistic Regression : A Case Study (마할라노비스-다구치 시스템과 로지스틱 회귀의 성능비교 : 사례연구)

  • Lee, Seung-Hoon;Lim, Geun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.39 no.5
    • /
    • pp.393-402
    • /
    • 2013
  • The Mahalanobis-Taguchi System (MTS) is a diagnostic and predictive method for multivariate data. In the MTS, the Mahalanobis space (MS) of reference group is obtained using the standardized variables of normal data. The Mahalanobis space can be used for multi-class classification. Once this MS is established, the useful set of variables is identified to assist in the model analysis or diagnosis using orthogonal arrays and signal-to-noise ratios. And other several techniques have already been used for classification, such as linear discriminant analysis and logistic regression, decision trees, neural networks, etc. The goal of this case study is to compare the ability of the Mahalanobis-Taguchi System and logistic regression using a data set.

Rock TBM design model derived from the multi-variate regression analysis of TBM driving data (TBM 굴진자료의 다변량 회귀분석에 의한 암반대응형 TBM의 설계모델 도출)

  • Chang, Soo-Ho;Choi, Soon-Wook;Lee, Gyu-Phil;Bae, Gyu-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.6
    • /
    • pp.531-555
    • /
    • 2011
  • This study aims to derive the statistical models for the estimation of the required specifications of a rock TBM as well as for its cutterhead design suitable for a given rock mass condition. From a series of multi-variate regression analysis of 871 TBM driving data and 51 linear rock cutting test results, the optimum models were newly proposed to consider a variety of rock properties and mechanical cutting conditions. When the derived models were applied to two domestic shield tunnels, their predictions of cutter penetration depth, cutter acting forces and cutter spacing were very close to real TBM driving data, showing their high applicability.

Multivariate Analysis for Clinicians (임상의를 위한 다변량 분석의 실제)

  • Oh, Joo Han;Chung, Seok Won
    • Clinics in Shoulder and Elbow
    • /
    • v.16 no.1
    • /
    • pp.63-72
    • /
    • 2013
  • In medical research, multivariate analysis, especially multiple regression analysis, is used to analyze the influence of multiple variables on the result. Multiple regression analysis should include variables in the model and the problem of multi-collinearity as there are many variables as well as the basic assumption of regression analysis. The multiple regression model is expressed as the coefficient of determination, $R^2$ and the influence of independent variables on result as a regression coefficient, ${\beta}$. Multiple regression analysis can be divided into multiple linear regression analysis, multiple logistic regression analysis, and Cox regression analysis according to the type of dependent variables (continuous variable, categorical variable (binary logit), and state variable, respectively), and the influence of variables on the result is evaluated by regression coefficient${\beta}$, odds ratio, and hazard ratio, respectively. The knowledge of multivariate analysis enables clinicians to analyze the result accurately and to design the further research efficiently.

A framework of Multi Linear Regression based on Fuzzy Theory and Situation Awareness and its application to Beach Risk Assessment

  • Shin, Gun-Yoon;Hong, Sung-Sam;Kim, Dong-Wook;Hwang, Cheol-Hun;Han, Myung-Mook;Kim, Hwayoung;Kim, Young jae
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.7
    • /
    • pp.3039-3056
    • /
    • 2020
  • Beaches have many risk factors that cause various accidents, such as drifting and drowning, these accidents have many risk factors. To analyze them, in this paper, we identify beach risk factors, and define the criteria and correlation for each risk factor. Then, we generate new risk factors based on Fuzzy theory, and define Situation Awareness for each time. Finally, we propose a beach risk assessment and prediction model based on linear regression using the calculated risk result and pre-defined risk factors. We use national public data of the Korea Meteorological Administration (KMA), and the Korea Hydrographic and Oceanographic Agency (KHOA). The results of the experiment showed the prediction accuracy of beach risk to be 0.90%, and the prediction accuracy of drifting and drowning accidents to be 0.89% and 0.86%, respectively. Also, through factor correlation analysis and risk factor assessment, the influence of each of the factors on beach risk can be confirmed. In conclusion, we confirmed that our proposed model can assess and predict beach risks.

Multi-Objective Optimization of Flexible Wing using Multidisciplinary Design Optimization System of Aero-Non Linear Structure Interaction based on Support Vector Regression (Support Vector Regression 기반 공력-비선형 구조해석 연계시스템을 이용한 유연날개 다목적 최적화)

  • Choi, Won;Park, Chan-Woo;Jung, Sung-Ki;Park, Hyun-Bum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.7
    • /
    • pp.601-608
    • /
    • 2015
  • The static aeroelastic analysis and optimization of flexible wings are conducted for steady state conditions while both aerodynamic and structural parameters can be used as optimization variables. The system of multidisciplinary design optimization as a robust methodology to couple commercial codes for a static aeroelastic optimization purpose to yield a convenient adaptation to engineering applications is developed. Aspect ratio, taper ratio, sweepback angle are chosen as optimization variables and the skin thickness of the wing. The real-coded adaptive range multi-objective genetic algorithm code, which represents the global multi-objective optimization algorithm, was used to control the optimization process. The support vector regression(SVR) is applied for optimization, in order to reduce the time of computation. For this multi-objective design optimization problem, numerical results show that several useful Pareto optimal designs exist for the flexible wing.

COMPOUNDED METHOD FOR LAND COVERING CLASSIFICATION BASED ON MULTI-RESOLUTION SATELLITE DATA

  • HE WENJU;QIN HUA;SUN WEIDONG
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.116-119
    • /
    • 2005
  • As to the synthetical estimation of land covering parameters or the compounded land covering classification for multi-resolution satellite data, former researches mainly adopted linear or nonlinear regression models to describe the regression relationship of land covering parameters caused by the degradation of spatial resolution, in order to improve the retrieval accuracy of global land covering parameters based on 1;he lower resolution satellite data. However, these methods can't authentically represent the complementary characteristics of spatial resolutions among different satellite data at arithmetic level. To resolve the problem above, a new compounded land covering classification method at arithmetic level for multi-resolution satellite data is proposed in this .paper. Firstly, on the basis of unsupervised clustering analysis of the higher resolution satellite data, the likelihood distribution scatterplot of each cover type is obtained according to multiple-to-single spatial correspondence between the higher and lower resolution satellite data in some local test regions, then Parzen window approach is adopted to derive the real likelihood functions from the scatterplots, and finally the likelihood functions are extended from the local test regions to the full covering area of the lower resolution satellite data and the global covering area of the lower resolution satellite is classified under the maximum likelihood rule. Some experimental results indicate that this proposed compounded method can improve the classification accuracy of large-scale lower resolution satellite data with the support of some local-area higher resolution satellite data.

  • PDF

Analysis of hysteresis rule of energy-saving block and invisible multi-ribbed frame composite wall

  • Lin, Qiang;Li, Sheng-cai;Zhu, Yongfu
    • Structural Engineering and Mechanics
    • /
    • v.77 no.2
    • /
    • pp.261-272
    • /
    • 2021
  • The energy-saving block and invisible multi-ribbed frame composite wall (EBIMFCW) is a new type of load-bearing wall. The study of this paper focus on it is hysteresis rule under horizontal cyclic loading. Firstly, based on the experimental data of the twelve specimens under horizontal cyclic loading, the influence of two important parameters of axial compression ratio and shear-span ratio on the restoring force model was analyzed. Secondly, a tetra-linear restoring force model considering four feature points and the degradation law of unloading stiffness was established by combining theoretical analysis and regression analysis of experimental data, and the theoretical formula of the peak load of the EBIMFCW was derived. Finally, the hysteretic path of the restoring force model was determined by analyzing the hysteresis characteristics of the typical hysteresis loop. The results show that the curves calculated by the tetra-linear restoring force model in this paper agree well with the experimental curves, especially the calculated values of the peak load of the wall are very close to the experimental values, which can provide a reference for the elastic-plastic analysis of the EBIMFCW.

Closed-form fragility analysis of the steel moment resisting frames

  • Kia, M.;Banazadeh, M.
    • Steel and Composite Structures
    • /
    • v.21 no.1
    • /
    • pp.93-107
    • /
    • 2016
  • Seismic fragility analysis is a probabilistic decision-making framework which is widely implemented for evaluating vulnerability of a building under earthquake loading. It requires ingredient named probabilistic model and commonly developed using statistics requiring collecting data in large quantities. Preparation of such a data-base is often costly and time-consuming. Therefore, in this paper, by developing generic seismic drift demand model for regular-multi-story steel moment resisting frames is tried to present a novel application of the probabilistic decision-making analysis to practical purposes. To this end, a demand model which is a linear function of intensity measure in logarithmic space is developed to predict overall maximum inter-story drift. Next, the model is coupled with a set of regression-based equations which are capable of directly estimating unknown statistical characteristics of the model parameters.To explicitly address uncertainties arise from randomness and lack of knowledge, the Bayesian regression inference is employed, when these relations are developed. The developed demand model is then employed in a Seismic Fragility Analysis (SFA) for two designed building. The accuracy of the results is also assessed by comparison with the results directly obtained from Incremental Dynamic analysis.

Design and Assessment of an Ozone Potential Forecasting Model using Multi-regression Equations in Ulsan Metropolitan Area (중회귀 모형을 이용한 울산지역 오존 포텐셜 모형의 설계 및 평가)

  • Kim, Yoo-Keun;Lee, So-Young;Lim, Yun-Kyu;Song, Sang-Keun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.1
    • /
    • pp.14-28
    • /
    • 2007
  • This study presented the selection of ozone ($O_3$) potential factors and designed and assessed its potential prediction model using multiple-linear regression equations in Ulsan area during the springtime from April to June, $2000{\sim}2004$. $O_3$ potential factors were selected by analyzing the relationship between meterological parameters and surface $O_3$ concentrations. In addition, cluster analysis (e.g., average linkage and K-means clustering techniques) was performed to identify three major synoptic patterns (e.g., $P1{\sim}P3$) for an $O_3$ potential prediction model. P1 is characterized by a presence of a low-pressure system over northeastern Korea, the Ulsan was influenced by the northwesterly synoptic flow leading to a retarded sea breeze development. P2 is characterized by a weakening high-pressure system over Korea, and P3 is clearly associated with a migratory anticyclone. The stepwise linear regression was performed to develop models for prediction of the highest 1-h $O_3$ occurring in the Ulsan. The results of the models were rather satisfactory, and the high $O_3$ simulation accuracy for $P1{\sim}P3$ synoptic patterns was found to be 79, 85, and 95%, respectively ($2000{\sim}2004$). The $O_3$ potential prediction model for $P1{\sim}P3$ using the predicted meteorological data in 2005 showed good high $O_3$ prediction performance with 78, 75, and 70%, respectively. Therefore the regression models can be a useful tool for forecasting of local $O_3$ concentration.