• Title/Summary/Keyword: multi-level converter

Search Result 149, Processing Time 0.03 seconds

MMC(Modular Multi-level Converter) type 25MVA HVDC System Test (MMC(Modular Multi-level Converter) type 25MVA HVDC 시스템 시험)

  • Jeong, Jong-kyou;Jung, Hong-ju;Yoo, Hyun-ho;Lee, Doo-young
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.438-439
    • /
    • 2018
  • 본 논문은 (주)효성 중공업연구소에서 국책과제를 통해 자체 개발한 MMC(Modular Multi-level Converter) type ${\pm}12kV$ 25MVA HVDC 시스템의 시험결과에 대해 소개한다. 제주에 구축된 HVDC 실증단지는 국내 유일의 MMC type 전압형 HVDC 시스템이며 11-레벨의 AC 출력 전압을 형성하는 2개의 컨버터가 Back-to-Back 형태로 구성되어 있다. 각 컨버터의 AC 출력단은 각각 계통과 풍력발전단지에 연계되어 풍력발전단지에서 생산된 전력을 계통으로 전송하는 역할을 한다. 본 논문에서는 국책과제의 정량적 목표항목을 달성하기 위한 시험을 수행한 결과에 대해서 소개한다.

  • PDF

Improved Modulation Scheme for Medium Voltage Modular Multi-level Converter Operated in Nearest Level Control (근사레벨제어로 동작하는 중전압 모듈형 멀티레벨 컨버터의 개선된 전압변조기법)

  • Kim, Do-Hyun;Kim, Jae-Hyuk;Han, Byung-Moon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.4
    • /
    • pp.285-296
    • /
    • 2017
  • This paper proposes an improved modulation scheme for the medium voltage modular multi-level converter (MMC), which operates in the nearest level control and applies in the medium voltage direct current (MVDC) system. In the proposed modulation scheme, the offset (neutral-to-zero output) voltage is adjusted, with the phase voltage magnitude, thereby maintaining a constant value with N+1 level in the controllable modulation index (MI) range. In order to confirm the proposed scheme's validity, computer simulations for the 22.9 kV - 25 MVA MMC were performed with PSCAD/EMTDC, as well as hardware experiments for the 380 V - 10 kVA MMC. The proposed modulation scheme offers to build a constant pole voltage regardless of the MI value, and to build a phase voltage with improved total harmonic distortion (THD).

DC/DC Power Converter Using Multi-Level (멀티레벨을 이용한 DC/DC 전력변환기)

  • Park, Sung-Jun;Yutao, Yutao;Kim, Dong-Ok;Bin, Jae-Goo;Kim, Cheul-U
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.158-159
    • /
    • 2007
  • In this paper a novel structure of multi-level converter for reducing ripple of output voltage is proposed. In the proposed converter Buck converters are connected in series to generate the output voltage and the ripple of output voltage can be reduced compared with the exiting Buck converter. Especially when outputting lower output voltage the number of acting switching elements is less and the result of ripple reducing is more obvious. It is expected that the converter proposed in this paper can be very useful in the case of wide range of output voltage.

  • PDF

Power Conditioning for a Small-Scale PV System with Charge-Balancing Integrated Micro-Inverter

  • Manoharan, Mohana Sundar;Ahmed, Ashraf;Seo, Jung-Won;Park, Joung-Hu
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1318-1328
    • /
    • 2015
  • The photovoltaic (PV) power conditioning system for small-scale applications has gained significant interest in the past few decades. However, the standalone mode of operation has been rarely approached. This paper presents a two-stage multi-level micro-inverter topology that considers the different operation modes. A multi-output flyback converter provides both the DC-Link voltage balancing for the multi-level inverter side and maximum power point tracking control in grid connection mode in the PV stage. A modified H-bridge multi-level inverter topology is included for the AC output stage. The multi-level inverter lowers the total harmonic distortion and overall ratings of the power semiconductor switches. The proposed micro-inverter topology can help to decrease the size and cost of the PV system. Transient analysis and controller design of this micro-inverter have been proposed for stand-alone and grid-connected modes. Finally, the system performance was verified using a 120 W hardware prototype.

High power 31 level Single Phase AC/DC Converter (대용량 21 레벨 단상 AC/DC 컨버터)

  • 전중함
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.309-312
    • /
    • 2000
  • Single-phase multi-level AC-DC converter is proposed that is composed of diode bridge and switch. The number of the supply current level is depending on the individual current level of the converter. A converter circuit the number of the level is equal to $\textrm{2}^{M+1}$-1 The proposed circuit has converter with 31 current levels. When the number of current level is increased smoother sinusoidal waveform can be obtained directly and it is possible to control the supply current almost continuously from zero to maximum without step changes of generating high voltage as pulse width modulation switching loss is decreased it has an advantage in large capacity. it is illustrated technique are confirmed the validity and effectiveness through the simulation & experiments

  • PDF

The study of isolation driver for Reversible Power Converter (가역전력변환기 구동의 절연에 관한 연구)

  • Chun, J.H.;Lee, H.W.;Taniguchi, Hatsunori
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1349-1351
    • /
    • 2005
  • In this paper discusses isolation driver of single phase AC-DC reversible power converter The reversible power converter driven by binary combination at different transformer winding ratio by BCD code level. It has a advantage that constructs a control system simply and obtain load current of good quality with out filter circuit and free from noise or isolation for lower switching frequency. In this research, study on current type converter and inverter circuit that consist for possibility of AC-DC/BC-AC multi-level reversible converter.

  • PDF

Multi-Level Active-Clamp Forward Converter

  • Park, Ki-Bum;Kim, Chong-Eun;Moon, Gun-Woo;Youn, Myung-Joong
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.188-189
    • /
    • 2007
  • Conventional active-clamp forward converter shows good performance in low power applications, however it suffers from a high voltage stress of switch and is not suitable for high input voltage applications. To solve this problem, a new multi-level active-clamp forward converter is proposed in this paper. Utilizing low rating switches, the proposed converter features high efficiency and low cost promising for high input voltage applications.

  • PDF

New Single-Phase Power Converter Topology for Frequency Changing of AC Voltage

  • Jou, Hurng-Liahng;Wu, Jinn-Chang;Wu, Kuen-Der;Huang, Ting-Feng;Wei, Szu-Hsiang
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.694-701
    • /
    • 2018
  • This paper proposes a new single-phase power converter topology for changing the frequency of AC voltage. The proposed single-phase frequency converter (SFC) includes a T-type multi-level power converter (TMPC), a frequency decoupling transformer (FDT) and a digital signal processor (DSP). The TMPC can convert a 60 Hz AC voltage to a DC voltage and then convert the DC voltage to a 50 Hz AC voltage. Therefore, the output currents of the two T-type power switch arms have 50 Hz and 60 Hz components. The FDT is used to decouple the 50 Hz and 60 Hz components. The salient feature of the proposed SFC is that only one power electronic converter stage is used since the functions of the AC-DC and DC-AC power conversions are integrated into the TMPC. Therefore, the proposed SFC can simplify both the power circuit and the control circuit. In order to verify the functions of the proposed SFC, a hardware prototype is established. Experimental results verify that the performance of the proposed SFC is as expected.

Differential Power Processing System for the Capacitor Voltage Balancing of Cost-effective Photovoltaic Multi-level Inverters

  • Jeon, Young-Tae;Kim, Kyoung-Tak;Park, Joung-Hu
    • Journal of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.1037-1047
    • /
    • 2017
  • The Differential Power Processing (DPP) converter is a promising multi-module photovoltaic inverter architecture recently proposed for photovoltaic systems. In this paper, a DPP converter architecture, in which each PV-panel has its own DPP converter in shunt, performs distributed maximum power point tracking (DMPPT) control. It maintains a high energy conversion efficiency, even under partial shading conditions. The system architecture only deals with the power differences among the PV panels, which reduces the power capacity of the converters. Therefore, the DPP systems can easily overcome the conventional disadvantages of PCS such as centralized, string, and module integrated converter (MIC) topologies. Among the various types of the DPP systems, the feed-forward method has been selected for both its voltage balancing and power transfer to a modified H-bridge inverter that needs charge balancing of the input capacitors. The modified H-bridge multi-level inverter had some advantages such as a low part count and cost competitiveness when compared to conventional multi-level inverters. Therefore, it is frequently used in photovoltaic (PV) power conditioning system (PCS). However, its simplified switching network draws input current asymmetrically. Therefore, input capacitors in series suffer from a problem due to a charge imbalance. This paper validates the operating principle and feasibility of the proposed topology through the simulation and experimental results. They show that the input-capacitor voltages maintain the voltage balance with the PV MPPT control operating with a 140-W hardware prototype.

Performance Analysis of Grid Connected Back-to-Back Converter Composed of Multi-pulse Converter and PWM Converter (다중펄스 컨버터와 PWM 컨버터로 구성된 Back-to-Back 컨버터의 계통연계 성능 분석)

  • Jeong, Jong-Kyou;Shim, Myong-Bo;Lee, Hye-Yeon;Han, Byung-Moon;Han, Young-Seong;Chung, Chung-Choo;Chang, Byung-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.451-459
    • /
    • 2010
  • This paper describes the performance comparison results for a hybrid back-to-back converter, which is composed of a 3-level 24-pulse converter and a 3-level PWM converter, in order to interconnect a large scale wind farm with the power grid. Also it describes the performance comparison results when the 24-pulse converter operates in only firing-angle control, and both firing-angle and the zero-voltage control. For the purpose of systematic performance comparison, computer simulations with PSCAD/EMTDC software were carried out, and based on simulation results a scaled hardware model with 2 kVA rating was built and tested.