• Title/Summary/Keyword: multi-layer structures

Search Result 318, Processing Time 0.027 seconds

Characteristics of the photoinduced anisotropy(PA) in Ag/AsGeSeS multilayer thin films (Ag/AsGeSeS 다층박막의 광유기 이방성(PA) 특성)

  • 박종화;나선웅;여철호;박정일;이영종;정홍배
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.362-365
    • /
    • 2001
  • The chalcogenide glasses of thin films have the superior property of photoinduced anisotrophy(PA). In this study, we observed the linear dichroism(D) using the irradiation with polarized He-Ne laser light, in the Ag/As$\sub$40/Ge$\sub$10/Se$\sub$15/S$\sub$35/ multi-layer. Mutilayer structures farmed by alternating metal(Ag) a chalcogenide(As$\sub$40/Ge$\sub$10/Se$\sub$15/S$\sub$35/). Such multilayer structures have a greater sensitivity to illumination and larger dichroism in comparison the conventional double layer structure. Also new phenomena are discovered. These results will be show a capability of new method that suggested more improvement of photoinduced anisotropy property.

  • PDF

Enhancing cloud computing security: A hybrid machine learning approach for detecting malicious nano-structures behavior

  • Xu Guo;T.T. Murmy
    • Advances in nano research
    • /
    • v.15 no.6
    • /
    • pp.513-520
    • /
    • 2023
  • The exponential proliferation of cutting-edge computing technologies has spurred organizations to outsource their data and computational needs. In the realm of cloud-based computing environments, ensuring robust security, encompassing principles such as confidentiality, availability, and integrity, stands as an overarching imperative. Elevating security measures beyond conventional strategies hinges on a profound comprehension of malware's multifaceted behavioral landscape. This paper presents an innovative paradigm aimed at empowering cloud service providers to adeptly model user behaviors. Our approach harnesses the power of a Particle Swarm Optimization-based Probabilistic Neural Network (PSO-PNN) for detection and recognition processes. Within the initial recognition module, user behaviors are translated into a comprehensible format, and the identification of malicious nano-structures behaviors is orchestrated through a multi-layer neural network. Leveraging the UNSW-NB15 dataset, we meticulously validate our approach, effectively characterizing diverse manifestations of malicious nano-structures behaviors exhibited by users. The experimental results unequivocally underscore the promise of our method in fortifying security monitoring and the discernment of malicious nano-structures behaviors.

Investigation of thermal buckling properties of ceramic-metal FGM sandwich plates using 2D integral plate model

  • Salah, Fethi;Boucham, Belhadj;Bourada, Fouad;Benzair, Abdelnour;Bousahla, Abdelmoumen Anis;Tounsi, Abdeldjebbar
    • Steel and Composite Structures
    • /
    • v.33 no.6
    • /
    • pp.805-822
    • /
    • 2019
  • In this work, a simple four-variable integral plate theory is employed for examining the thermal buckling properties of functionally graded material (FGM) sandwich plates. The proposed kinematics considers integral terms which include the effect of transverse shear deformations. Material characteristics and thermal expansion coefficient of the ceramic-metal FGM sandwich plate faces are supposed to be graded in the thickness direction according to a "simple power-law" variation in terms of the "volume fractions" of the constituents. The central layer is always homogeneous and consists of an isotropic material. The thermal loads are supposed as uniform, linear, and nonlinear temperature rises within the thickness direction. The influences of geometric ratios, gradient index, loading type, and type sandwich plate on the buckling properties are examined and discussed in detail.

Broad-band Multi-layered Radar Absorbing Material Design for Radar Cross Section Reduction of Complex Targets Consisting of Multiple Reflection Structures (다중반사 구조를 갖는 복합구조물의 RCS 감소를 위한 광대역 다층 전파흡수체 설계)

  • Kim, Kook-Hyun;Cho, Dae-Seung;Kim, Jin-Hyeong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.4
    • /
    • pp.445-450
    • /
    • 2007
  • An optimum design process of the broad-band multi-layered radar absorbing material, using genetic algorithm, is established for the radar cross section reduction of a complex target, which consists of multiple reflection structures, such as surface warships. It follows the successive process of radar cross section analysis, scattering center analysis, radar absorbing material design, and reanalysis of radar cross section after applying the radar absorbing material. It is demonstrated that it is very effective even in the optimum design of the multi-layer radar absorbing material. This results from the fact that the three factors, i.e.. the incident angle range, broad-band frequencies, and maximum thickness can be simultaneously taken into account by adopting the genetic algorithm.

LMI based criterion for reinforced concrete frame structures

  • Chen, Tim;Kau, Dar;Tai, Y.;Chen, C.Y.J.
    • Advances in concrete construction
    • /
    • v.9 no.4
    • /
    • pp.407-412
    • /
    • 2020
  • Due to the influence of nonlinearity and time-variation, it is difficult to establish an accurate model of concrete frame structures that adopt active controllers. Fuzzy theory is a relatively appropriate method but susceptible to human subjective experience to decrease the performance. To guarantee the stability of multi-time delays complex system with multi-interconnections, a delay-dependent criterion of evolved design is proposed in this paper. Based on this criterion, the sector nonlinearity which converts the nonlinear model to multiple rule base of the linear model and a new sufficient condition to guarantee the asymptotic stability via Lyapunov function is implemented in terms of linear matrix inequalities (LMI). A numerical simulation for a three-layer reinforced concrete frame structure subjected to earthquakes is demonstrated that the proposed criterion is feasible for practical applications.

Fabrication and Characterization of Floating-Gate MOSFET with Multi-Gate and Channel Structures for CMOS Image Sensor Applications (다중 Gate 및 Channel 구조를 갖는 CMOS 영상 센서용 Floating-Gate MOSFET 소자의 제작 및 특성 평가)

  • Ju, Byeong-Gwon;Sin, Gyeong-Sik;Lee, Yeong-Seok;Baek, Gyeong-Gap;Lee, Yun-Hui;Park, Jeong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.1
    • /
    • pp.17-22
    • /
    • 2001
  • The floating-gate MOSFETs were fabricated by employing 1.5 m n-well CMOS process and their optical-electrical properties were characterized for the application to CMOS image sensor system. Based on the simulation of energy band diagram and operating mechanism of parasitic BJT were proposed as solutions for the increase of photo-current value. In order to realize them, MOSFETs having multi-gate and channel structures were fabricated and 60% increase in photo-current was achieved through enlargement of depletion layer and parallel connection of parasitic BJTs by channel division.

  • PDF

Interfaces of Stacking $TiO_2$ Thin Layers Affected on Photocatalytic Activities

  • Ju, Dong-U;Bu, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.189.1-189.1
    • /
    • 2013
  • Titanium dioxide (TiO2) is a wide bandgap semiconductor possessing photochemical stability and thus widely used for photocatalysis. However, enhancing photocatalytic efficiency is still a challenging issue. In general, the efficiency is affected by physio-chemical properties such as crystalline phase, crystallinity, exposed crystal facets, crystallite size, porosity, and surface/bulk defects. Here we propose an alternative approach to enhance the efficiency by studying interfaces between thin TiO2 layers to be stacked; that is, the interfacial phenomena influencing on the formation of porous structures, controlling crystallite sizes and crystallinity. To do so, multi-layered TiO2 thin films were fabricated by using a sol-gel method. Specifically, a single TiO2 thin layer with a thickness range of 20~40 nm was deposited on a silicon wafer and annealed at $600^{\circ}C$. The processing step was repeated up to 6 times. The resulting structures were characterized by conventional electron microscopes, and followed by carrying out photocatalytic performances. The multi-layered TiO2 thin films with enhancing photocatalytic efficiency can be readily applied for bio- and gas sensing devices.

  • PDF

Wave propagation in unbounded elastic domains using the spectral element method: formulation

  • Meza Fajardo, Kristel C.;Papageorgiou, Apostolos S.
    • Earthquakes and Structures
    • /
    • v.3 no.3_4
    • /
    • pp.383-411
    • /
    • 2012
  • The objective of the present paper is to review and implement the most recent developments in the Spectral Element Method (SEM), as well as improve aspects of its implementation in the study of wave propagation by numerical simulation in elastic unbounded domains. The classical formulation of the method is reviewed, and the construction of the mass matrix, stiffness matrix and the external force vector is expressed in terms of matrix operations that are familiar to earthquake engineers. To account for the radiation condition at the external boundaries of the domain, a new absorbing boundary condition, based on the Perfectly Matched Layer (PML) is proposed and implemented. The new formulation, referred to as the Multi-Axial Perfectly Matched Layer (M-PML), results from generalizing the classical Perfectly Matched Layer to a medium in which damping profiles are specified in more than one direction.

Distribution of shear force in perforated shear connectors

  • Wei, Xing;Shariati, M.;Zandi, Y.;Pei, Shiling;Jin, Zhibin;Gharachurlu, S.;Abdullahi, M.M.;Tahir, M.M.;Khorami, M.
    • Steel and Composite Structures
    • /
    • v.27 no.3
    • /
    • pp.389-399
    • /
    • 2018
  • A perforated shear connector group is commonly used to transfer shear in steel-concrete composite structures when the traditional shear stud connection is not strong enough. The multi-hole perforated shear connector demonstrates a more complicated behavior than the single connector. The internal force distribution in a specific multi-hole perforated shear connector group has not been thoroughly studied. This study focuses on the load-carrying capacity and shear force distribution of multi-hole perforated shear connectors in steel-concrete composite structures. ANSYS is used to develop a three-dimensional finite element model to simulate the behavior of multi-hole perforated connectors. Material and geometric nonlinearities are considered in the model to identify the failure modes, ultimate strength, and load-slip behavior of the connection. A three-layer model is introduced and a closed-form solution for the shear force distribution is developed to facilitate design calculations. The shear force distribution curve of the multi-hole shear connector is catenary, and the efficiency coefficient must be considered in different limit states.

The Influence of Encapsulation Layer Incorporated into Flexible Substrates for Bending Stress (Flexible 기판의 Bending Stress에 대한 Encapsulation Layer의 영향)

  • Park, Jun-Baek;Seo, Dae-Shik;Lee, Sang-Keuk;Lee, Joon-Ung;Kim, Yong-Hoon;Moon, Dae-Gyu;Han, Jeong-In
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.473-476
    • /
    • 2003
  • This paper shows necessity of encapsulation layer to maximite flexibility of brittle indium-tin-oxide (ITO) on polymer substrates. And, Young's modulus (E) of encapsulation layer have an significant effect on external bending stress and the coefficient of thermal expansion (CTE) of that have a significant effect on internal thermal stress. To compare magnitude of total mechanical stress including both bending stress and thermal stress, the mechanical stress of triple-layer structure (substrate / ITO / encapsulation layer or substrate / buffer layer / ITO) can be quantified and numerically analyzed through the farthest cracked island position. As a result, it should be noted that multi-layer structures with more elastic encapsulation material have small mechanical stress compared to that of buffer and encapsulation structure of large Young's modulus material when they were externally bent.

  • PDF