• 제목/요약/키워드: multi-humanoid robot

검색결과 27건 처리시간 0.024초

Walk Simulations of a Biped Robot

  • Lim, S.;Kim, K.I.;Son, Y.I.;Kang, H.I.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2132-2137
    • /
    • 2005
  • This paper is concerned with computer simulations of a biped robot walking in dynamic gaits. To this end, a three-dimensional robot is considered possessing a torso and two identical legs of a kinematically ingenious design. Specific walking patterns are off-line generated meeting stability based on the ZMP condition. Subsequently, to verify whether the robot can walk as planned, a multi-body dynamics CAE code has been applied to the corresponding joint motions determined by inverse kinematics. In this manner, complex mass effects could be accurately evaluated for the robot model. As a result, key parameters to successful gaits are identified including inherent characteristics as well. Also, joint actuator capacities are found required to carry out those gaits.

  • PDF

이족 로봇의 위치 이동: 정보행 대 동보행 (Locomotions of a Biped Robot: Static vs. Dynamic Gaits)

  • 임승철;고인환
    • 대한기계학회논문집A
    • /
    • 제30권6호
    • /
    • pp.643-652
    • /
    • 2006
  • This paper is concerned with computer simulations of a biped robot walking in static and dynamic gaits. To this end, a three-dimensional robot is considered possessing a torso and two identical legs of a typical design. For such limbs, a set of inverse kinematic solutions is analytically derived between the torso and the feet. Specific walking patterns are off-line generated meeting stability based on the VPCG or ZMP condition. Subsequently, to verify whether the robot can walk as planned in the presence of mass and ground effects, a multi-body dynamics CAE code has been applied to the resulting joint motions determined by inverse kinematics. As a result, the key parameters to successful gaits could be identified including inherent characteristics as well. Upon comparisons between the two types of gaits, dynamic gaits are concluded more desirable for larger humaniods.

푸리에 급수를 이용한 이족보행로봇의 보행 궤적 해석해 생성 (Analytic Solution for Stable Bipedal Walking Trajectory Generation Using Fourier Series)

  • 박일우;백주훈
    • 제어로봇시스템학회논문지
    • /
    • 제15권12호
    • /
    • pp.1216-1222
    • /
    • 2009
  • This article describes a simple method for generating the walking trajectory for the biped humanoid robot. The method used a simple inverted model instead of complex multi-mass model and a reasonable explanation for the model simplification is included. The problem of gait trajectory generation is to find the solution from the desired ZMP trajectory to CoG trajectory. This article presents the analytic solution for the bipedal gait generation on the bases of ZMP trajectory. The presented ZMP trajectory has Fourier series form, which has finite or infinite summation of sine and cosine functions, and ZMP trajectory can be designed by calculating the coefficients. From the designed ZMP trajectory, this article focuses on how to find the CoG trajectory with analytical way from the simplified inverted pendulum model. Time segmentation based approach is adopted for generating the trajectories. The coefficients of the function should be designed to be continuous between the segments, and the solution is found by calculating the coefficients with this connectivity conditions. This article also has the proof and the condition of solution existence.

Improvements of Performance of Multi-DOF Spherical Motor by Double Air-gap Feature

  • Lee, Ho-Joon;Park, Hyun-Jong;Won, Sung-Hong;Ryu, Gwang-Hyun;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권1호
    • /
    • pp.90-96
    • /
    • 2013
  • As the need of electric motor is increased rapidly throughout our society, the various application fields are created and the service market called robot gets expanded as well as the existing industrial market. Out of those, the joint systems such as humanoid that is servo actuator for position control or all fields which require multi-degree of freedom (multi-DOF) require the development of innovative actuator. It is multi-DOF spherical motor that can replace the existing system in multi-DOF operating system. But, multi-DOF spherical motor that has been researched up to date is at the stage which is insufficient in performance or mechanical practicality yet. Thus, first of all the research results and limitation of the previously-researched guide frame-type spherical motors were analyzed and then the feature of double air-gap spherical motor which was devised to complement that was studied. The double air-gap multi-DOF spherical motor is very suitable spherical motor for system applying which requires the multi-DOF operation due to its simple structure that does not require other guide frame as well as performance improvement due to its special shape which has two air-gaps. So, the validity of the study was verified by designing and producing it with 3D-FEM through the exclusive jig for multi-DOF spherical motor.

Optimal Design for Flexible Passive Biped Walker Based on Chaotic Particle Swarm Optimization

  • Wu, Yao;Yao, Daojin;Xiao, Xiaohui
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권6호
    • /
    • pp.2493-2503
    • /
    • 2018
  • Passive dynamic walking exhibits humanoid and energy efficient gaits. However, optimal design of passive walker at multi-variable level is not well studied yet. This paper presents a Chaotic Particle Swarm Optimization (CPSO) algorithm and applies it to the optimal design of flexible passive walker. Hip torsional stiffness and damping were incorporated into flexible biped walker, to imitate passive elastic mechanisms utilized in human locomotion. Hybrid dynamics were developed to model passive walking, and period-one gait was gained. The parameters global searching scopes were gained after investigating the influences of structural parameters on passive gait. CPSO were utilized to optimize the flexible passive walker. To improve the performance of PSO, multi-scroll Jerk chaotic system was used to generate pseudorandom sequences, and chaotic disturbance would be triggered if the swarm is trapped into local optimum. The effectiveness of CPSO is verified by comparisons with standard PSO and two typical chaotic PSO methods. Numerical simulations show that better fitness value of optimal design could be gained by CPSO presented. The proposed CPSO would be useful to design biped robot prototype.

패션 일러스트레이션에 나타난 판타스틱 신체의 표현 분석 (The Expression of Fantastic Body in Fashion Illustration)

  • 최정화
    • 한국의류산업학회지
    • /
    • 제11권6호
    • /
    • pp.867-877
    • /
    • 2009
  • These days, the fantastic in opposition to classic beauty becomes a genre of creative body expression. The purpose of this study was to analyze the expressive characteristics of body types and meanings in recent fantastic fashion illustration. The method of this study was to analyze recent documentaries, fashion books, internet web site and so forth. The results were as follows: In literatures, pictures and movies, the category of the fantastic body's expressive types were classified as dominant mutant based on SF, multi body or fragment body by disruption, heterogeneous compound based on myth, personified humanoid and non substance in supernatural boundary. The dominant mutant based on SF was expressed image morphing, composition of machine image with body and modern metamorphosis of classic SF body. It means propensity to post-feminism and reservation of meaning analysis based on human unconsciousness. The multi body or fragment body by disruption in fashion illustration was expressed distorted composition of same body pictures, replacement of different bodies, deconstruction and partial omission of body and composition of meaning or non meaning images. It means permanence of self and basic narcissism. The heterogeneous compound based on myth was expressed general composition or optical illusion of various and aggressive animal motive. It means reinterpretation of original myth, metaphor of basic femme fatale, pursuit of permanence and sign of primitive mind in unconsciousness. The personified humanoid was expressed real human body description of mannequin or ball joint doll and anthropomorphism of robot image. It means representative satisfaction and nostalgia of childhood. The non substance in supernatural boundary was expressed grotesque description of ghost, zombie, vampire, angel, fairy, using of symbolic red, black color and non body. It means human's basic desire about immortality and taboo. Through the result of these study, the expression of fantastic body in fashion illustration will expend expressive method and we will understand human and cultural codes of today.

계층적 네트워크 기반 다중 모터 제어기의 안정도 분석 (Stability Analysis of Multi-motor Controller based on Hierarchical Network)

  • 문찬우
    • 문화기술의 융합
    • /
    • 제9권3호
    • /
    • pp.677-682
    • /
    • 2023
  • 인간형 로봇을 구동하기 위해서 로봇 내부에는 많은 수의 모터와 센서가 사용된다. 다수의 구동기를 연결할 때 생기는 배선의 문제를 해결하기 위해 통신 네트워크에 기반한 제어기를 사용해왔는데 구성 비용면에서 유리하고, 신뢰성이 높은 통신 프로토콜인 CAN이 주로 사용되었다. 제어기의 구조 측면에서 상위 제어기에 알고리즘을 탑재하기 쉬운 속도 제어형 구조가 선호되고 있는데, 이때 CAN의 낮은 통신 대역폭이 문제가 되며, 충분한 통신 대역폭을 얻기 위해 이전에는 다수의 CAN 네트워크로 분리해서 통신망을 구성하였다. 본 논문에서는 높은 통신 대역폭을 얻기 위해 고속의 FlexRay와 저속의 CAN 통신망이 계층적으로 연결된 다중 모터 제어 시스템에 대해 전송시간 지연에 대한 안정도 분석을 수행하고 허용된 전송시간 내에 센서 정보와 구동 신호를 전달하기 위한 게이트웨이의 구성과 노드 할당 방법에 관하여 연구한다. 제안된 계층적 네트워크 기반 제어시스템은 다중 모터제어 시스템의 제어성능을 높이고 안정도를 확보하는 데 이바지할 수 있을 것으로 기대한다.