• Title/Summary/Keyword: multi-hop routing

Search Result 308, Processing Time 0.033 seconds

Lifetime Maximizing Routing Algorithm for Multi-hop Wireless Networks (다중-홉 무선 네트워크 환경에서 수명 최대화를 위한 라우팅 알고리즘)

  • Lee, Keon-Taek;Han, Seung-Jae;Park, Sun-Ju
    • Journal of KIISE:Information Networking
    • /
    • v.35 no.4
    • /
    • pp.292-300
    • /
    • 2008
  • In multi-hop wireless networks like Wireless Mesh Networks (WMN) and Wireless Sensor Networks (WSN), nodes often rely on batteries as their power source. In such cases, energy efficient routing is critical. Many schemes have been proposed to find the most energy efficient path, but most of them do not achieve optimality on network lifetime. Once found, the energy efficient path is constantly used such that the energy of the nodes on the path is depleted quickly. As an alternative, the approaches that dynamically change the path at run time have also been proposed. These approaches, however, involve high overhead of establishing multiple paths. In this paper, we first find an optimal multi-path routing using LP. Then we apply an approximation algorithm to derive a near-optimal solution for single-path routing. We compare the performance of the proposed scheme with several other existing algorithms through simulation.

Optimal Routing Path Selection Algorithm in Ad-hoc Wireless Sensor Network (Ad-hoc 센서 네트워크를 위한 최적 라우팅 경로 설정 알고리즘)

  • Jang In-Hun;Sim Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.6
    • /
    • pp.736-741
    • /
    • 2005
  • The highly popular algorithm to determine routing path for the multi-hopping wireless sensor network is DSR(Dynamic Source Routing), which is one of the Demand-Driven way to makes the route only when there is a request for sending data. However, because DSR attaches the route's record on the sending packet, the bigger number of sensor node is, the heavier packet in DSR becomes. In this paper, we try to propose the new optimal routing path selecting algorithm which does not make the size of packet bigger by using proper routing table even though the number of sensor node increases, and we try to show our algorithm is more stable and reliable because it is based on the cost function considering some network resources of each sensor node such as power consumption, mobility, traffic in network, distance(hop) between source and destination.

Reliable multi-hop communication for structural health monitoring

  • Nagayama, Tomonori;Moinzadeh, Parya;Mechitov, Kirill;Ushita, Mitsushi;Makihata, Noritoshi;Ieiri, Masataka;Agha, Gul;Spencer, Billie F. Jr.;Fujino, Yozo;Seo, Ju-Won
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.481-504
    • /
    • 2010
  • Wireless smart sensor networks (WSSNs) have been proposed by a number of researchers to evaluate the current condition of civil infrastructure, offering improved understanding of dynamic response through dense instrumentation. As focus moves from laboratory testing to full-scale implementation, the need for multi-hop communication to address issues associated with the large size of civil infrastructure and their limited radio power has become apparent. Multi-hop communication protocols allow sensors to cooperate to reliably deliver data between nodes outside of direct communication range. However, application specific requirements, such as high sampling rates, vast amounts of data to be collected, precise internodal synchronization, and reliable communication, are quite challenging to achieve with generic multi-hop communication protocols. This paper proposes two complementary reliable multi-hop communication solutions for monitoring of civil infrastructure. In the first approach, termed herein General Purpose Multi-hop (GPMH), the wide variety of communication patterns involved in structural health monitoring, particularly in decentralized implementations, are acknowledged to develop a flexible and adaptable any-to-any communication protocol. In the second approach, termed herein Single-Sink Multi-hop (SSMH), an efficient many-to-one protocol utilizing all available RF channels is designed to minimize the time required to collect the large amounts of data generated by dense arrays of sensor nodes. Both protocols adopt the Ad-hoc On-demand Distance Vector (AODV) routing protocol, which provides any-to-any routing and multi-cast capability, and supports a broad range of communication patterns. The proposed implementations refine the routing metric by considering the stability of links, exclude functionality unnecessary in mostly-static WSSNs, and integrate a reliable communication layer with the AODV protocol. These customizations have resulted in robust realizations of multi-hop reliable communication that meet the demands of structural health monitoring.

The Performance Comparison of the Unicast Routing Protocol and the Broadcast Routing Protocol in the Small-sized Ad hoc Network (소규모 애드혹 네트워크에서의 유니캐스트와 브로드캐스트 라우팅 프로토콜의 성능비교)

  • Kim, Dong-Hee;Park, Jun-Hee;Moon, Kyeong-Deok;Lim, Kyung-Shik
    • The KIPS Transactions:PartC
    • /
    • v.13C no.6 s.109
    • /
    • pp.685-690
    • /
    • 2006
  • This paper compares the performance of the unicast routing protocol and the broadcast routing protocol in a small-sized wireless multi-hop network, such as home network. Normally, ad-hoc routing protocols are designed for general wireless multi-hop networks, not being said to be optimized for the small-sized ad hoc network. This paper compares some unicast routing protocols and optimal broadcast routing protocol, and shows the result. The result of the simulation says the broadcast routing protocol shows better performance than the ad-hoc routing protocols in the small-sired wireless multi-hop network. Especially, the result shows that the broadcast protocol has higher packet delivery ratio and lower packet latency than unicast routing protocols

A Routing Scheme for Multi-Classes in Multi-hop LEO Satellite Networks with Inter-Satellite Links (위성간 링크를 가지는 다중 홉 저궤도 위성망에서 멀티 클래스 지원을 위한 경로 배정 기법)

  • Lee, Bong-Ju;Kim, Young-Chon
    • Journal of IKEEE
    • /
    • v.7 no.1 s.12
    • /
    • pp.80-87
    • /
    • 2003
  • This paper proposes a routing scheme for multi-hop LEO satellite networks with inter-satellite links aiming for reducing the number of link handovers while keeping the efficient use of network resource. The proposed routing scheme controls the link handovers by taking account of the deterministic LEO satellite system dynamics, geographical location of a ground terminal and statistic information of call duration. The performance of the proposed routing scheme has been evaluated and compared with previous routing schemes in terms of average number of link handovers during a call, the call blocking and dropping probability, and the network utilization.

  • PDF

A Design of Multi-hop Network Protocol based on LoRaWAN Gateway

  • Kim, Minyoung;Jang, Jongwook
    • International journal of advanced smart convergence
    • /
    • v.8 no.2
    • /
    • pp.109-115
    • /
    • 2019
  • Currently, LPWA(Low Power Wide Area) communication technology is widely used due to the development of IoT(Internet of Things) technology. Among the LPWA technologies, LoRaWAN(Long Range Wide Area Network) is widely used in many fields due to its wide coverage, stable communication speed, and low-cost modem module prices. In particular, LoRa(Long Range) can easily construct LoRaWAN with a dedicated gateway. So many organizations are building their own LoRaWAN-based networks. The LoRaWAN Gateway receives the LoRa packet transmitted from an End-device installed in the adjacent location, converts it into the Internet protocol, and sends the packet to the final destination server. Current LoRa Gateway uses a single-hop method, and each gateway must include a communication network capable of the Internet. If it is the mobile communication(i.e., WCDMA, LTE, etc.) network, it is required to pay the internet usage fee which is installed in each gateway. If the LoRa communication is frequent, the user has to spend a lot of money. We propose an idea on how to design a multi-hop protocol which enables packet routing between gateways by analyzing the LoRaWAN communication method implemented in its existing single-hop way in this paper. For this purpose, this paper provides an analysis of the standard specification of LoRaWAN and explains what was considered when such protocol was designed. In this paper, two gateways have been placed based on the functional role so as to make the multi-hop protocol realized: (i) hopping gateway which receives packets from the end-device and forwards them to another gateway; and (ii) main gateway which finally transmits packets forwarded from the hopping gateway to the server via internet. Moreover, taking into account that LoRaWAN is wireless mobile communication, a level-based routing method is also included. If the protocol proposed by this paper is applied to the LoRaWAN network, the monthly internet fee incurred for the gateway will be reduced and the reliability of data transmission will be increased.

Minimum LQI based On-demand Routing Protocol for Sensor Networks (Minimum LQI 기반의 On-demand 센서 네트워크 라우팅 프로토콜)

  • Lee, Wan-Jik;Lee, Won-You;Heo, Seok-Yeol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.11
    • /
    • pp.3218-3226
    • /
    • 2009
  • A number of on-demand routing protocols for sensor networks have been proposed yet. However, the majority of proposed on-demand routing protocols for sensor networks are not suitable for a relatively poor wireless environment and sensor applications requiring reliable data transmission due to using a hop-count metric for their protocols. In this paper, we proposed a minimum LQI(Link Quality Indicator) based on-demand sensor network routing protocol that is suitable for a relatively poor wireless environment and implemented the proposed routing protocol on a TinyOS. We also compared the implemented protocol with typical hop count based routing protocol by carrying out performance experiments on a multi-hop testbed. The results from these experiments showed that the successful transmission rate of the proposed routing protocol is higher than that of typical hop count based routing protocol over a poor wireless link.

Probabilistic Directional Routing Protocol in Multi-Hop Maritime Communication Networks (다중-홉 선박 통신망에서 확률 기반의 지향성 라우팅 프로토콜)

  • Lee, Junman;Cho, Kumin;Yun, Changho;Kang, Chung G.
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.5
    • /
    • pp.857-859
    • /
    • 2015
  • In this letter, we consider a directional routing protocol that reduces the duplicated packets for AODV-based flooding in the course of establishing the end-to-end route in the multi-hop maritime ad-hoc networks. We propose an adaptive means of reducing the routing overhead subject to the node density and the target probability of successful routing that is analyzed by the stochastic geometry.

A Novel Multi-Path Routing Algorithm Based on Clustering for Wireless Mesh Networks

  • Liu, Chun-Xiao;Zhang, Yan;Xu, E;Yang, Yu-Qiang;Zhao, Xu-Hui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.4
    • /
    • pp.1256-1275
    • /
    • 2014
  • As one of the new self-organizing and self-configuration broadband networks, wireless mesh networks are being increasingly attractive. In order to solve the load balancing problem in wireless mesh networks, this paper proposes a novel multi-path routing algorithm based on clustering (Cluster_MMesh) for wireless mesh networks. In the clustering stage, on the basis of the maximum connectivity clustering algorithm and k-hop clustering algorithm, according to the idea of maximum connectivity, a new concept of node connectivity degree is proposed in this paper, which can make the selection of cluster head more simple and reasonable. While clustering, the node which has less expected load in the candidate border gateway node set will be selected as the border gateway node. In the multi-path routing establishment stage, we use the intra-clustering multi-path routing algorithm and inter-clustering multi-path routing algorithm to establish multi-path routing from the source node to the destination node. At last, in the traffic allocation stage, we will use the virtual disjoint multi-path model (Vdmp) to allocate the network traffic. Simulation results show that the Cluster_MMesh routing algorithm can help increase the packet delivery rate, reduce the average end to end delay, and improve the network performance.

Enhanced Packet Transmission in Ad-hoc Networks using Unicast with Temporary Routing (애드혹 네트워크에서 임시 경로 설정 유니캐스트를 기반으로 한 향상된 멀티 홉 전송 기법)

  • Ko, Sung-Hyun;Yoo, Sung-Jae;Jung, Sou-Hwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.2
    • /
    • pp.131-140
    • /
    • 2011
  • Smart packet agent is an application that is proposed to provide routing protocol and service module in ubiquitous network environment. However, it uses multi-hop broadcast, thus it causes increasing network traffic, low-speed data transmission, and the unnecessary joining nodes. In this paper, a transmit technique that uses unicast-based multi-hop to have lower network traffic and faster transmission time than the multi-hop broadcast technique. In our scheme, u-Zone Master establishes temporary routing paths by calculating moving nodes' hop-counter. Therefore, it reduces smart packet agent's network traffic and retransmission rate. Besides, this paper proposed an UDP transmission that bases on sliding window. Hence, the Stop & Wait transmission speed is improved. The results, which are taken by analyzing performance prove that the proposed scheme has better performance.