• Title/Summary/Keyword: multi-frequency characteristics

Search Result 661, Processing Time 0.024 seconds

Calculation method and application of natural frequency of integrated model considering track-beam-bearing-pier-pile cap-soil

  • Yulin Feng;Yaoyao Meng;Wenjie Guo;Lizhong Jiang;Wangbao Zhou
    • Steel and Composite Structures
    • /
    • v.49 no.1
    • /
    • pp.81-89
    • /
    • 2023
  • A simplified calculation method of natural vibration characteristics of high-speed railway multi-span bridge-longitudinal ballastless track system is proposed. The rail, track slab, base slab, main beam, bearing, pier, cap and pile foundation are taken into account, and the multi-span longitudinal ballastless track-beam-bearing-pier-cap-pile foundation integrated model (MBTIM) is established. The energy equation of each component of the MBTIM based on Timoshenko beam theory is constructed. Using the improved Fourier series, and the Rayleigh-Ritz method and Hamilton principle are combined to obtain the extremum of the total energy function. The simplified calculation formula of the natural vibration frequency of the MBTIM under the influence of vertical and longitudinal vibration is derived and verified by numerical methods. The influence law of the natural vibration frequency of the MBTIM is analyzed considering and not considering the participation of each component of the MBTIM, the damage of the track interlayer component and the stiffness change of each layer component. The results show that the error between the calculation results of the formula and the numerical method in this paper is less than 3%, which verifies the correctness of the method in this paper. The high-order frequency of the MBTIM is significantly affected considering the track, bridge pier, pile soil and pile cap, while considering the influence of pile cap on the low-order and high-order frequency of the MBTIM is large. The influence of component damage such as void beneath slab, mortar debonding and fastener failure on each order frequency of the MBTIM is basically the same, and the influence of component damage less than 10m on the first fourteen order frequency of the MBTIM is small. The bending stiffness of track slab and rail has no obvious influence on the natural frequency of the MBTIM, and the bending stiffness of main beam has influence on the natural frequency of the MBTIM. The bending stiffness of pier and base slab only has obvious influence on the high-order frequency of the MBTIM. The natural vibration characteristics of the MBTIM play an important guiding role in the safety analysis of high-speed train running, the damage detection of track-bridge structure and the seismic design of railway bridge.

A Study for the Reliability Based Design Optimization of the Automobile Suspension Part (자동차 현가장치 부품에 대한 신뢰성 기반 최적설계에 관한 연구)

  • 이종홍;유정훈;임홍재
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.123-130
    • /
    • 2004
  • The automobile suspension system is composed of parts that affect performances of a vehicle such as ride quality, handling characteristics, straight performance and steering effort, etc. Moreover, by using the finite element analysis the cost for the initial design step can be decreased. In the design of a suspension system, usually system vibration and structural rigidity must be considered simultaneously to satisfy dynamic and static requirements simultaneously. In this paper, we consider the weight reduction and the increase of the first eigen-frequency of a suspension part, the upper control arm, especially using topology optimization and size optimization. Firstly, we obtain the initial design to maximize the first eigen-frequency using topology optimization. Then, we apply the multi-objective parameter optimization method to satisfy both the weight reduction and the increase of the first eigen-frequency. The design variables are varying during the optimization process for the multi-objective. Therefore, we can obtain the deterministic values of the design variables not only to satisfy the terms of variation limits but also to optimize the two design objectives at the same time. Finally, we have executed reliability based optimal design on the upper control arm using the Monte-Carlo method with importance sampling method for the optimal design result with 98% reliability.

Stiffness and Natural Frequency of Stone Masonry pagoda (석탑문화재의 강성과 고유진동수에 관한 연구)

  • Lee, Sung-Min;Son, Ho-Woong;Lee, Soo-Gon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.3
    • /
    • pp.263-270
    • /
    • 2004
  • The dynamic behavior of multi-layered stone masonry monuments, such as stone pagoda, are mainly influenced by contour condition of contacting surface of stones. These structures can be modeled as a multi-degrees of freedom system. In this case the mass of the system can be easily estimated, mean while the estimation of stiffness at junction is not simple. In this paper a method for estimating the spring constant at the contacting surface of stone is proposed. The proposed method utilizes the natural frequency of the system which can be obtained by eigenvalue analysis.

Single Phase Utility Frequency AC-High Frequency AC Matrix Converter Using One-Chip Reverse Blocking IGBTs based Bidirectional Switches

  • Hisayuki, Sugimura;Kwon, Soon-Kurl;Lee, Hyun-Woo;Mutsuo, Nakaoka
    • Proceedings of the KIEE Conference
    • /
    • 2006.10d
    • /
    • pp.125-128
    • /
    • 2006
  • This paper presents a novel type soft switching PWM power frequency AC-AC converter using bidirectional active switches or single phase utility frequency AC-high frequency AC matrix converter. This converter can directly convert utility frequency AC (UFAC, 50Hz/60Hz) power to high frequency AC (HFAC) power ranging more than 20kHz up to 100kHz. A novel soft switching PWM prototype of high frequency multi-resonant PWM controlled UFAC-HFAC matrix converter using antiparallel one-chip reverse blocking IGBTs manufactured by IXYS corp. is based on the soft switching resonance with asymmetrical duty cycle PWM strategy. This single phase UFAC-HFAC matrix converter has some remarkable features as electrolytic capacitor DC busline linkless topology, unity power factor correction and sine-wave line current shaping, simple configuration with minimum circuit components, high efficiency and downsizing. This series load resonant UFAC-HFAC matrix converter, incorporating bidirectional active power switches is developed and implemented for high efficiency consumer induction heated food cooking appliances in home uses and business-uses. Its operating performances as soft switching operating ranges and high frequency effective power regulation characteristics are illustrated and discussed on the basis of simulation and experimental results.

  • PDF

Low Phase Noise CMOS VCO with Hybrid Inductor

  • Ryu, Seonghan
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.3
    • /
    • pp.158-162
    • /
    • 2015
  • A low phase noise CMOS voltage controlled oscillator(VCO) for multi-band/multi-standard RF Transceivers is presented. For both wide tunability and low phase noise characteristics, Hybrid inductor which uses both bondwire inductor and planar spiral inductor in the same area, is proposed. This approach reduces inductance variation and presents high quality factor without custom-designed single-turn inductor occupying large area, which improves phase noise and tuning range characteristics without additional area loss. An LC VCO is designed in a 0.13um CMOS technology to demonstrate the hybrid inductor concept. The measured phase noise is -121dBc/Hz at 400KHz offset and -142dBc/Hz at 3MHz offset from a 900MHz carrier frequency after divider. The tuning range of about 28%(3.15 to 4.18GHz) is measured. The VCO consumes 7.5mA from 1.3V supply and meets the requirements for GSM/EDGE and WCDMA standard.

Via Contact and Deep Contact Hole Etch Process Using MICP Etching System (Multi-pole Inductively Coupled Plasma(MICP)를 이용한 Via Contact 및 Deep Contact Etch 특성 연구)

  • 설여송;김종천
    • Journal of the Semiconductor & Display Technology
    • /
    • v.2 no.3
    • /
    • pp.7-11
    • /
    • 2003
  • In this research, the etching characteristics of via contact and deep contact hole have been studied using multi-pole inductively coupled plasma(MICP) etching system. We investigated Plasma density of MICP source using the Langmuir probe and etching characteristics with RF frequency, wall temperature, chamber gap, and gas chemistry containing Carbon and Fluorine. As the etching time increases, formation of the polymer increases. To improve the polymer formation, we controlled the temperature of the reacting chamber, and we found that temperature of the chamber was very effective to decrease the polymer thickness. The deep contact etch profile and high selectivity(oxide to photoresist) have been achieved with the optimum mixed gas ratio containing C and F and the temperature control of the etching chamber.

  • PDF

Vocal acoustic characteristics of speakers with depression (우울증 화자 음성의 음향음성학적 특성)

  • Baek, Yeon-Sook;Kim, Se-Joo;Kim, Eun-Yeon;Choi, Yae-Lin
    • Phonetics and Speech Sciences
    • /
    • v.4 no.1
    • /
    • pp.91-98
    • /
    • 2012
  • The purposes of this paper is to study the characteristics of compared to the speakers voice without depression and speakers with depression, and to propose a objective method for the measurement of the therapeutic effects as well as for diagnostics of depression based on the characteristics. The voice samples obtained from 11 female speakers with depression, aged from 20 to 40, diagnosed as having major depressive disorder by an psychiatrist were compared with those from 12 normal controls with matched sex, age, height, weight, education, smoking, and drinking. The voice samples are taken by a portable digital recorder(TASCAM DR-07, Japan) and analysed using the MDVP(Multi-Dimentional Voice Program) software module from CSL(Computerized Speech Lab, kay elemetrics, co, model 4100). The result of the investigation are as following. First, the average speaking fundamental frequency and loudness range of the speakers with depression group was statistically significantly lower than that of the control group. The pitch range of the control group was rather higher than that of the speakers with depression group, but without statistical significance. Overall speech rates have no statistical difference between two groups. Second, the average speaking fundamental frequency and loudness range have statistically significant negative correlation with Beck Depression Inventory, i. e. more severe depression exhibits lower average speaking fundamental frequency and loudness range. Other vocal parameters such as pitch range and overall speech rate have no statistically meaningful correlations with Beck Depression Inventory.

A Study on Mechanical Property of SM53C Steel by High Frequency Induction Hardening (고주파열처리 SM53C강의 기계적 성질에 관한 연구)

  • Kim, Hwang-Soo;Kim, Jung-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.6
    • /
    • pp.7-15
    • /
    • 2010
  • Recently, with the high performance and efficiency of machine, there have been required the multi-functions in various machine parts, such as the heat resistance, the abrasion resistance and the stress resistance as well as the strength. Fatigue crack growth tests were carried out to investigate the fatigue characteristics of high carbon steel (SM53C) experienced by high-frequency induction treatment. The Cam nose part of the Automobile's Cam shaft is strongly bumped with rocker arm or valve-lift. Therefore abnormal wear such as unfair wear and early wear occur in the surface. This abnormal wear causes a defect that bad timing open and close actions of the engine valve happen in the combustion chamber so the fuel gas will be combustion imperfect. Therefore, the cam shaft demands high hardness and wear resistance. In this study, high frequency heat treatment has been accomplished while wear test for material SM53C.

A Low Frequency Band Watermarking with Weighted Correction in the Combined Cosine and Wavelet Transform Domain

  • Deb, Kaushik;Al-Seraj, Md. Sajib;Chong, Ui-Pil
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.1
    • /
    • pp.13-20
    • /
    • 2013
  • A combined DWT and DCT based watermarking technique of low frequency watermarking with weighted correction is proposed. The DWT has excellent spatial localization, frequency spread and multi-resolution characteristics, which are similar to the theoretical models of the human visual system (HVS). The DCT based watermarking techniques offer compression while DWT based watermarking techniques offer scalability. These desirable properties are used in this combined watermarking technique. In the proposed method watermark bits are embedded in the low frequency band of each DCT block of selected DWT sub-band. The weighted correction is also used to improve the imperceptibility. The extracting procedure reverses the embedding operations without the reference of the original image. Compared with the similar approach by DCT based approach and DWT based approach, the experimental results show that the proposed algorithm apparently preserves superiori mage quality and robustness under various attacks such as JPEG compression, cropping, sharping, contrast adjustments and so on.

Noise and Vibration Characteristics by Heavy-weight Floor Impact (중량바닥충격에 의한 소음 및 진동 특성)

  • 서상호;송희수;전진용
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.919-922
    • /
    • 2003
  • The correlation between noise and vibration by a heavy-weight floor impact was studied. The triggering technique was used for increasing the reliability and stability to measure the level of sound pressure, sound intensity and vibration acceleration. The simple finite element and rigid body analysis method were suggested to calculate the natural frequencies of the multi-layer floor system. The result show that the isolation material adapted to reduce the light-weight floor impact noise, causing the natural frequency lower, make resonance with dominant driving frequency, and increase the noise level very sharply. Therefore the noise level Peak in the region of low frequency, below 63Hz, would be related with the natural frequencies of the floor system.

  • PDF