• Title/Summary/Keyword: multi-elemental analysis

Search Result 29, Processing Time 0.029 seconds

Elemental Analysis of Drinking Water with ICP/AES (ICP/AES에 의한 먹는물의 무기원소 분석)

  • Park, Kye-Hun;Shin, Hyung-Seon;Han, Cheong-Hee
    • Economic and Environmental Geology
    • /
    • v.29 no.1
    • /
    • pp.21-24
    • /
    • 1996
  • Inductively coupled plasma atomic emission spectrophotometer (ICP/AES) is a versatile modern instruments for the multi-element analysis, but quantitative analysis using ICP/AES with normal pneumatic nebulizer is not applicable for the measurement of elemental concentrations in water down to the drinkining water standard level except a few elements because of poor detection limits. However, the detection limit can be lowered enough to measure drinking water standard, if ultrasonic nebulizer and/or hydride vapor generator is attached. This method is tested with groundwater samples from Tajeon area. It is confirmed that the elemental concentrations in these samples are within the limit of drinking water standard for the most elements. However, uranium concentration is very high in some samples compared with the concentrations suggested by Environmental Protection Agency of U.S.A. There is no standard concentration level to this element in Korea and it should be prepared immediately.

  • PDF

Preliminary Study on the Visualization and Quantification of Elemental Compositions in Individual Microdroplets using Solidification and Synchrotron Radiation Techniques

  • Ma, Chang-Jin;Tohno, Susumu;Kasahara, Mikio
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.1
    • /
    • pp.56-63
    • /
    • 2011
  • Quantifying the solute composition of a cloud droplet (or a whole droplet) is an important task for understanding formation processes and heating/cooling rates. In this study, a combination of droplet fixation and SR-XRF microprobe analysis was used to visualize and quantify elements in a micro-scale droplet. In this study, we report the preliminary outcome of this experiment. A spherical micro-scale droplet was successfully solidified through exposure to ${\alpha}$-cyano-acrylate vapor without affecting its size or shape. An X-ray microprobe system equipped at the beam line 37XU of Super Photon ring 8 GeV (SPring-8) was applied to visualize and quantify the elemental composition in an individual micro-scale droplet. It was possible to reconstruct 2D elemental maps for the K and Cl contained in a microdroplet that was dispensed from the 10-ppm KCl standard solution. Multi-elemental peaks corresponding to X-ray energy were also successfully resolved. Further experiments to determine quantitative measures of elemental mass in individual droplets and high-resolution X-ray microtomography (i.e., 3D elemental distribution) are planned for the future.

Multi - elemental Analysis of Hair by Inductively Coupled Plasma/Mass Spectrometry (유도결합 플라스마 질량분석법에 의한 모발의 다원소 분석)

  • Cha, Myung Jin;Kang, Jun Mo;Park, Chang Joon
    • Analytical Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.335-340
    • /
    • 2002
  • An analytical method has been developed to determine multi-elements in human hair samples by inductively coupled plasma mass spectrometry (ICP-MS). 0.05 g of hair sample was added to the Teflon digestion bomb together with 1.5 mL of nitric acid and an appropriate amount of In as an internal standard. The sample was then decomposed in the microwave digestion system. The hair certified reference material, GBW 09101, was analyzed for the validation of the analytical method. The determined values were in good agreement with the certified values within the uncertainty range.

Optimum Conditions for Introducing Free Radical Polymerizable Methacrylate Groups on the MWCNT Surface by Michael Addition Reaction (MWCNT 표면에 Michael 부가 반응으로 자유 라디칼 중합 가능한 Methacrylate기 도입에 대한 최적 개질 조건)

  • Kim, Sunghoon;Park, Seonghwan;Kwon, Jaebeom;Ha, KiRyong
    • Korean Chemical Engineering Research
    • /
    • v.53 no.1
    • /
    • pp.83-90
    • /
    • 2015
  • In this study, we investigated optimum conditions for the introduction of a lot of free radical polymerizable methacrylate groups on the multi-walled carbon nanotube (MWCNT) surface. Carboxyl groups were introduced first on MWCNT surfaces by treating with a mixture of sulfuric acid and nitric acid with ultrasonic bath for 2 hours, and oxidized MWCNTs were reacted further with thionyl chloride followed by triethylenetetramine (TETA) to introduce amino groups on the oxidized MWCNT surface, to make MWCNT-$NH_2$. To introduce free radical polymerizable methacrylate groups on the MWCNT-$NH_2$, MWCNT-$NH_2$ was reacted with 3-(acryloyloxy)-2-hydroxypropyl methacrylate (AHM) by Michael addition reaction. We investigated progress of modification reactions for MWCNT by fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and elemental analysis (EA). We found maximum degree of Michael addition reactions between AHM and TETA grafted on MWCNT-$NH_2$ for 10:1 mol ratio and 8 hour reaction time in our reaction conditions.

Free vibration analysis of cracked thin plates using generalized differential quadrature element method

  • Shahverdi, Hossein;Navardi, Mohammad M.
    • Structural Engineering and Mechanics
    • /
    • v.62 no.3
    • /
    • pp.345-355
    • /
    • 2017
  • The aim of the present study is to develop an elemental approach based on the differential quadrature method for free vibration analysis of cracked thin plate structures. For this purpose, the equations of motion are established using the classical plate theory. The well-known Generalized Differential Quadrature Method (GDQM) is utilized to discretize the governing equations on each computational subdomain or element. In this method, the differential terms of a quantity field at a specific computational point should be expressed in a series form of the related quantity at all other sampling points along the domain. However, the existence of any geometric discontinuity, such as a crack, in a computational domain causes some problems in the calculation of differential terms. In order to resolve this problem, the multi-block or elemental strategy is implemented to divide such geometry into several subdomains. By constructing the appropriate continuity conditions at each interface between adjacent elements and a crack tip, the whole discretized governing equations of the structure can be established. Therefore, the free vibration analysis of a cracked thin plate will be provided via the achieved eigenvalue problem. The obtained results show a good agreement in comparison with those found by finite element method.

Geographic authentication of rice (Oryza sativa L.) collected from Asian countries using multi-elements, stable isotope ratio, and chemometric analyses

  • Lee, Kyoung-Jin;Park, Sung-Kyu;Lee, Ji-Hee;Son, Na-Young;Chung, Ill-Min;Kim, Seung-Hyun
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.263-263
    • /
    • 2017
  • Rice (Oryza sativa L.) is the world's third largest food crop after wheat and corn. Geographic authentication of rice has recently emerged as an important issue for enhancing human health via food safety and quality assurance. Here, we aimed to discriminate rice from six Asian countries through geographic authentication using combinations of elemental/isotopic composition analysis and chemometric techniques. Principal components analysis could distinguish samples cultivated from most countries, except for those cultivated in the Philippines and Japan. Furthermore, orthogonal projection to latent structure-discriminant analysis provided clear discrimination between rice cultivated in Korea and other countries. The major common variables responsible for differentiation in these models were ${\delta}^{34}S$, Mn, and Mg. Our findings contribute to understanding the variations in elemental and isotopic compositions in rice depending on geographic origins, and offer valuable insight into the control of fraudulent labeling regarding the geographic origins of rice traded among Asian countries.

  • PDF

High resolution spectroscopic study of the peculiar globular cluster M22 (NGC 6656)

  • Kim, Hyeong-Jun;Lee, Jae-Woo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.65.1-65.1
    • /
    • 2017
  • We present the high-resolution spectroscopic study of the red-giant branch (RGB) stars in the peculiar globular cluster M22 (NGC 6656). We obtained high-resolution spectra of 55 RGB stars using the CTIO 4-m telescope and the HYDRA multi-object spectrograph. By employing an improved LTE analysis method, we measured accurate elemental abundances. In this talk, we will discuss the differences in the chemical composition between the two stellar populations in the context of the formation of M22.

  • PDF

Synthesis, Characterization, and the Influence of Functionalized Multi-Walled Carbon Nanotubes with Creatinine and 2-Aminobenzophenone on the Gastric Cancer Cells

  • Tahermansouri, Hasan;Aryanfar, Yaser;Biazar, Esmaeil
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.149-153
    • /
    • 2013
  • The chemical functionalization of carboxylated multi-walled carbon nanotubes (MWCNT-COOH) by creatinine (MWCNT-Amide) and latter modification with 2-aminobenzophenone for producing 1-methyl-9-phenyl-1H-imidazo[4,5-b]quinolin-2-amine (MWCNT-quino) have been investigated. All products were characterized by Fourier transform infrared spectroscopy, Raman spectroscopy, scanning electron microscope, elemental analysis, thermogravimetric analysis, derivative thermogravimetric and cellular investigations. The interesting point is that MWCNT-quino can be homogeneously dispersed in dimethylformamide and to some extent in ethyl alcohol without sonication. Also, MTT assay was used to examine the behavior of cell proliferation after 48 h of cell culture experiments. Cellular results showed high toxicity of MWCNT-quino on the cancer cells. These functionalizations have been chosen due to active sites of carbonyl and methylene groups in MWCNT-Amide and the creating quinoline derivative on the MWCNTs for future application.

Isotopic Analysis of NUSIMEP-6 Uranium Particles using SEM-TIMS

  • Park, Jong-Ho;Park, Sujin;Song, Kyuseok
    • Mass Spectrometry Letters
    • /
    • v.4 no.3
    • /
    • pp.51-54
    • /
    • 2013
  • Isotopic analysis using thermal ionization mass spectrometry coupled with scanning electron microscopy (SEM-TIMS) was performed to determine the isotopic ratios of uranium contained in micro-particles in the 6th Nuclear Signatures Interlaboratory Measurement Evaluation Programme (NUSIMEP-6) sample. Elemental analysis by energy dispersive X-ray spectroscopy (EDS) was conducted on uranium-bearing mirco-particles, which were transferred to rhenium filaments for TIMS loading using a micromanipulation system in a SEM. A multi-ion-counter system was utilized to detect the ion signals of the four isotopes of uranium simultaneously. The isotope ratios of uranium corrected by bracketing using a reference material showed excellent agreement with the certified values. The measurement accuracy for $n(^{234}U)/n(^{238}U)$ and (b) $n(^{235}U)/n(^{238}U)$ was 10% and 1%, respectively, which met the requirements for qalification for the NetWork of Analytical Laboratories (NWAL).

Analysis method of signal model for synthetic aperture integral imaging (합성 촬영 집적 영상의 신호 모델 해석 방법)

  • Yoo, Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.11
    • /
    • pp.2563-2568
    • /
    • 2010
  • SAII (synthetic aperture integral imaging) is a useful technique to record many multi view images of 3D objects by using a moving camera and to reconstruct 3D depth images from the recorded multiviews. This is largely composed of two processes. A pickup process provides elemental images of 3D objects and a reconstruction process generates 3D depth images computationally. In this paper, a signal model for SAII is presented. We defined the granular noise and analyzed its characteristics. Our signal model revealed that we could reduce the noise in the reconstructed images and increase the computational speed by reducing the shifting distance of a single camera.