• Title/Summary/Keyword: multi-criteria optimization

Search Result 121, Processing Time 0.027 seconds

A Study on the Optimization Method of Building Envelope using Non-linear Programming (비선형계획법을 이용한 건물의 외피최적화 방법)

  • Won, Jong-Seo;Lee, Kyung-Hoi
    • KIEAE Journal
    • /
    • v.3 no.2
    • /
    • pp.17-24
    • /
    • 2003
  • The purpose of this study is to present rational methods of multi-criteria optimization of the envelope of buildings. The object is to determine the optimum R-value of the envelope of a building, based on the following criteria: minimum building costs (including the cost of materials and construction) and yearly heating costs. Mathematical model described heat losses and gains in a building during the heating season. It takes into consideration heat losses through wall, roof, floor and windows. Particular attention was paid to have a more detailed description of heat gains due to solar radiation. On the assumption that shape of building is rectangle in order to solve the problem, optimum R-value of the envelope of a building is determined by using non-linear programing methods(Kuhn-Tucker Conditions). The results constitute information for designers on the optimum R-value of a building envelope for energy saving buildings.

Optimization Method of Building Energy Performance and Construction Cost Using Kuhn-Tucker Conditions (쿤-터커 조건을 이용한 건물의 에너지성능과 비용 최적화방법)

  • Won, Jong-Seo;Koo, Jae-Oh
    • KIEAE Journal
    • /
    • v.3 no.2
    • /
    • pp.51-58
    • /
    • 2003
  • The purpose of this study is to present rational methods of multi-criteria optimization of the shape of energy saving buildings. The object is to determine the optimum dimension of the shape of a building, based on the following criteria: minimum building costs (including the cost of materials and construction) and yearly heating costs. Mathematical model described heat losses and gains in a building during the heating season. It takes into consideration heat losses through wall, roof, floor and windows. Particular attention was paid to have a more detailed description of heat gains due to solar radiation. On the assumption that shape of building is rectangle in order to solve the problem, the proportions of wall length and building height are determined by using non-linear programing methods(Kuhn-Tucker Conditions). The results constitute information for designers on the optimum proportions of wall lengths, height, and the ratios of window to wall areas for energy saving buildings.

Topology optimization for thin plate on elastic foundations by using multi-material

  • Banh, Thien Thanh;Shin, Soomi;Lee, Dongkyu
    • Steel and Composite Structures
    • /
    • v.27 no.2
    • /
    • pp.177-184
    • /
    • 2018
  • This study contributes to evaluate multiphase topology optimization design of plate-like structures on elastic foundations by using classic plate theory. Multi-material optimal topology and shape are produced as an alternative to provide reasonable material assignments based on stress distributions. Multi-material topology optimization problem is solved through an alternative active-phase algorithm with Gauss-Seidel version as an optimization model of optimality criteria. Stiffness and adjoint sensitivity formulations linked to thin plate potential strain energy are derived in terms of multiphase design variables and Winkler-Pasternak parameters considering elastic foundation to apply to the current topology optimization. Numerical examples verify efficiency and diversity of the present topology optimization method of elastic thin plates depending on multiple materials and Winkler-Pasternak parameters with the same amount of volume fraction and total structural volume.

Multi-Objective Optimization of Multistory Shear Building Under Seismic Loads (지진하중을 받는 다층 뼈대구조물의 다목적 최적설계)

  • 조효남;민대홍;정봉교
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.255-262
    • /
    • 2002
  • In this paper, an improved multi-objective optimmum design method is proposed. And it is applied to steel frames under seismic loads. The multi-objective optimization problem is formulated with three optimality criteria, namely, minimum structural weight and maximum strain energy and stability. The Pareto curve can be obtained by performing the multi-objective optimization for multistory shear buildings. In order to efficiently solve the multi-objective optimization problem the decomposition method that separates both system-level and element-level is used. In addition, various techniques such as effective reanalysis technique with respect to intermediate variables and sensitivity analysis using an automatic differentiation (AD) we incorporated. Moreover, the relationship function among section properties induced from the profile is used in order to link system-level and element level. From the results of numerical investigation, it may be stated that the proposed method will lead to the more rational design compared with the conventional one.

  • PDF

Topology Optimization of Plane Structures using Modal Strain Energy for Fundamental Frequency Maximization

  • Lee, Sang-Jin;Bae, Jung-Eun
    • Architectural research
    • /
    • v.12 no.1
    • /
    • pp.39-47
    • /
    • 2010
  • This paper describes a topology optimization technique which can maximize the fundamental frequency of the structures. The fundamental frequency maximization is achieved by means of the minimization of modal strain energy as an inverse problem so that the strain energy based resizing algorithm is directly used in this study. The strain energy to be minimized is therefore employed as the objective function and the initial volume of structures is used as the constraint function. Multi-frequency problem is considered by the introduction of the weight which is used to combine several target modal strain energy terms into one scalar objective function. Several numerical examples are presented to investigate the performance of the proposed topology optimization technique. From numerical tests, it is found to be that the proposed optimization technique is extremely effective to maximize the fundamental frequency of structure and can successfully consider the multi-frequency problems in the topology optimization process.

Application of multi objective genetic algorithm in ship hull optimization

  • Guha, Amitava;Falzaranoa, Jeffrey
    • Ocean Systems Engineering
    • /
    • v.5 no.2
    • /
    • pp.91-107
    • /
    • 2015
  • Ship hull optimization is categorized as a bound, multi variable, multi objective problem with nonlinear constraints. In such analysis, where the objective function representing the performance of the ship generally requires computationally involved hydrodynamic interaction evaluation methods, the objective functions are not smooth. Hence, the evolutionary techniques to attain the optimum hull forms is considered as the most practical strategy. In this study, a parametric ship hull form represented by B-Spline curves is optimized for multiple performance criteria using Genetic Algorithm. The methodology applied to automate the hull form generation, selection of optimization solvers and hydrodynamic parameter calculation for objective function and constraint definition are discussed here.

A Desirability Function-Based Multi-Characteristic Robust Design Optimization Technique (호감도 함수 기반 다특성 강건설계 최적화 기법)

  • Jong Pil Park;Jae Hun Jo;Yoon Eui Nahm
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.4
    • /
    • pp.199-208
    • /
    • 2023
  • Taguchi method is one of the most popular approaches for design optimization such that performance characteristics become robust to uncontrollable noise variables. However, most previous Taguchi method applications have addressed a single-characteristic problem. Problems with multiple characteristics are more common in practice. The multi-criteria decision making(MCDM) problem is to select the optimal one among multiple alternatives by integrating a number of criteria that may conflict with each other. Representative MCDM methods include TOPSIS(Technique for Order of Preference by Similarity to Ideal Solution), GRA(Grey Relational Analysis), PCA(Principal Component Analysis), fuzzy logic system, and so on. Therefore, numerous approaches have been conducted to deal with the multi-characteristic design problem by combining original Taguchi method and MCDM methods. In the MCDM problem, multiple criteria generally have different measurement units, which means that there may be a large difference in the physical value of the criteria and ultimately makes it difficult to integrate the measurements for the criteria. Therefore, the normalization technique is usually utilized to convert different units of criteria into one identical unit. There are four normalization techniques commonly used in MCDM problems, including vector normalization, linear scale transformation(max-min, max, or sum). However, the normalization techniques have several shortcomings and do not adequately incorporate the practical matters. For example, if certain alternative has maximum value of data for certain criterion, this alternative is considered as the solution in original process. However, if the maximum value of data does not satisfy the required degree of fulfillment of designer or customer, the alternative may not be considered as the solution. To solve this problem, this paper employs the desirability function that has been proposed in our previous research. The desirability function uses upper limit and lower limit in normalization process. The threshold points for establishing upper or lower limits let us know what degree of fulfillment of designer or customer is. This paper proposes a new design optimization technique for multi-characteristic design problem by integrating the Taguchi method and our desirability functions. Finally, the proposed technique is able to obtain the optimal solution that is robust to multi-characteristic performances.

Practical Optimization Methods for Finding Best Recycling Pathways of Plastic Materials

  • Song, Hyun-Seob;Hyun, Jae Chun
    • Clean Technology
    • /
    • v.7 no.2
    • /
    • pp.99-107
    • /
    • 2001
  • Optimization methodologies have been proposed of find the best environment-friendly recycling pathways of plastic materials based on life-cycle assessment (LCA) methodology. The main difficulty in conducting this optimization study is that multiple environmental burdens have to be considered simultaneously as the cost functions. Instead of generating conservative Pareto or noninferior solutions following multi-objective optimization approaches, we have proposed some practical criteria on how to combine the different environmental burdens into a single measure. The obtained single objective optimization problem can then be solved by conventional nonlinear programming techniques or, more effectively, by a tree search method based on decision flows. The latter method reduces multi-dimensional optimization problems to a set of one-dimensional problems in series. It is expected the suggested tree search approach can be applied to many LCA studies as a new promising optimization tool.

  • PDF

A Study on the Optimal VAR planning Using Fuzzy Linear Progamming with Multi-criteria Function (Fuzzy 다목적 선형계획법을 이용한 최적 무효전력 배준계획에 관한 연구)

  • 송길영;이희영
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.9
    • /
    • pp.984-993
    • /
    • 1992
  • Fuzzy L.P. with Multi-criteria function is adopted in this VAR planning algorithm to accomplish the optimization of comflicting objectives, such as the amount of the VAR installed and power system loss, while keeping the bus voltage profile within an admissible range. Fuzzy L.P. with Multi-criteria function, a powerful tool dealing with the fuzziness of satisfaction levels of the constraints and the goal of objective functions, enables us to search for the solutions which may contribute in VAR planning. This advantage is not provided by traditional standardized L.P. The effectiveness of the proposed algorithm has been verified by the test on the IEEE-30 bus system.

  • PDF

Pareto Optimal Design of the Vehicle Body (차체의 팔렛토 최적 설계)

  • Kim, Byoung-Gon;Chung, Tae-Jin;Lee, Jeong-Ick
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.4
    • /
    • pp.67-74
    • /
    • 2008
  • The important dynamic specifications in the aluminum automobile body design are the vibrations and crashworthiness in the views of ride comforts and safety. Thus, considerable effort has been invested into improving the performance of mechanical structures comprised of the interactive multiple sub-structures. Most mechanical structures are complex and are essentially multi-criteria optimization problems with objective functions retained as constraints. Each weight factor can be defined according to the effects and priorities among objective functions, and a feasible Pareto-optimal solution exists for the criteria-defined constraints. In this paper, a multi-criteria design based on the Pareto-optimal sensitivity is applied to the vibration qualities and crushing characteristics of front structure in the automobile body design. The vibration qualities include the idle, wheel unbalance and road shake. The crushing characteristic of front structure is the axial maximum peak load.