• Title/Summary/Keyword: multi-core fiber

Search Result 29, Processing Time 0.019 seconds

Optimal design of a lightweight composite sandwich plate used for airplane containers

  • Al-Fatlawi, Alaa;Jarmai, Karoly;Kovacs, Gyorgy
    • Structural Engineering and Mechanics
    • /
    • v.78 no.5
    • /
    • pp.611-622
    • /
    • 2021
  • Composite material-due to low density-causes weight savings, which results in lower fuel consumption of transport vehicles. The aim of the research was to change the existing base-plate of the aluminum airplane container with the composite sandwich plate in order to reduce the weight of the containers of cargo aircrafts. The newly constructed sandwich plate consists of aluminum honeycomb core and composite face-sheets. The face-sheets consist of glass or carbon or hybrid fiber layers. The orientations of the fibers in the face-sheets were 0°, 90° and ±45°. Multi-objective optimization method was elaborated for the newly constructed sandwich plates. Based on the design aim, the importance of the objective functions (weight and cost of sandwich plates) was the same (50%). During the optimization nine design constraints were considered: stiffness, deflection, facing stress, core shear stress, skin stress, plate buckling, shear crimping, skin wrinkling, intracell buckling. The design variables were core thickness and number of layers of the face-sheets. During the optimization both the Weighted Normalized Method of the Excel Solver and the Genetic Algorithm Solver of Matlab software were applied. The mechanical properties of composite face-sheets were calculated by Laminator software according to the Classical Lamination Plate Theory and Tsai-Hill failure criteria. The main added-value of the study is that the multi-objective optimization method was elaborated for the newly constructed sandwich structures. It was confirmed that the optimal new composite sandwich construction-due to weight savings and lower fuel consumption of cargo aircrafts - is more advantageous than conventional all-aluminum container.

Performance Analysis of OCDMA on Plastic Optical Fiber Access Network (플라스틱 광섬유를 사용한 통신망에서 OCDMA의 성능 분석)

  • Zhang, Ke;Suh, Hee-Jong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.11
    • /
    • pp.1083-1092
    • /
    • 2016
  • In this paper, the performance of the optical code-division multiple access (OCDMA) technology on a plastic optical fiber (POF) access network, which had received much attention due to its low weight, large core diameter, flexibility, easy installation, and especially its high bandwidth, is analyzed. Recently, POF was a very attractive candidate for transmission media in an access network based on OCDMA technology. But the conventional OCDMA system only allows finite units to transmit and access simultaneously according to the number of channels which are restricted by BER, and so, in this paper, to resolve this problem a novel multi-priority reservation protocol is also proposed. By using this reservation scheme and a distributed arbitration algorithm, channel collision and destination conflict could be avoided. And this protocol can efficiently support the transmission of multimedia messages that require the different time-delay. The network throughput and average delay using various system parameters have been investigated by numerical analysis and simulation experiments. These results shows that the multi-priority reservation protocol in this POF access network based on OCDMA technology is valid and efficient.

Vibration analysis of damaged core laminated curved panels with functionally graded sheets and finite length

  • Zhao, Li-Cai;Chen, Shi-Shuenn;Xu, Yi-Peng;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.38 no.5
    • /
    • pp.477-496
    • /
    • 2021
  • The main objective of this paper is to study vibration of sandwich open cylindrical panel with damaged core and FG face sheets based on three-dimensional theory of elasticity. The structures are made of a damaged isotropic core and two external face sheets. These skins are strengthened at the nanoscale level by randomly oriented Carbon nanotubes (CNTs) and are reinforced at the microscale stage by oriented straight fibers. These reinforcing phases are included in a polymer matrix and a three-phase approach based on the Eshelby-Mori-Tanaka scheme and on the Halpin-Tsai approach, which is developed to compute the overall mechanical properties of the composite material. Three complicated equations of motion for the panel under consideration are semi-analytically solved by using 2-D differential quadrature method. Several parametric analyses are carried out to investigate the mechanical behavior of these multi-layered structures depending on the damage features, through-the-thickness distribution and boundary conditions. It is seen that for the large amount of power-law index "P", increasing this parameter does not have significant effect on the non-dimensional natural frequency parameters of the FG sandwich curved panel. Results indicate that by increasing the value of isotropic damage parameter "D" up to the unity (fully damaged core) the frequency would tend to become zero. One can dictate the fiber variation profile through the radial direction of the sandwich panel via the amount of "P", "b" and "c" parameters. It should be noticed that with increase of volume fraction of fibers, the frequency parameter of the panels does not increase necessarily, so by considering suitable amounts of power-law index "P" and the parameters "b" and "c", one can get dynamic characteristics similar or better than the isotropic limit case for laminated FG curved panels.

A Study on the Current Sensor Using an Optical Modulator with BSO (BSO와 ZnSe를 광 변조기로 이용한 전류센서에 관한 연구)

  • 김요희;이대영
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.28A no.9
    • /
    • pp.721-728
    • /
    • 1991
  • In this paper, a magneto-optic modulator has been designed by using single crystal BSO and polycrystal ZnSe as Faraday cells. And practical core-type optical current sensors using pure iron and permalloy have been prepared and experimented. In order to obtain efficient magnetic field detection, LED(NEC OD08358, 0.87 $\mu$m) was used as optical source, PIN-PD(OD-8454)as optical receiver and multi-mode optical fiber (100/140$\mu$m) as transmission line. The characteristics matrix of the optical element was calculated by Stokes parameter, and optic modulation characteristics equations were derived by Muller matrix. Electromagnetic analysis program (FLUX 2D, micro VAX 3600) by finite element method was used to find the magnetic flux density around the core. The measuring error of the output voltage to input current has been masured below 5% in the range of 50A to 1000A. As the temperature was changed from -20$^{\circ}C$ to 60$^{\circ}C$, the maximum measurement error of the optical output has been found to be 0.5% at 60$^{\circ}C$. These experimental results show good temperature and linearity characteristics. The SNR of the overall system was 47dB in case of 600A (250.2 Oe) conductor current and the system has good noise immunity.

  • PDF

Development of High Precision Machining Technology (초정밀 표면 형상 가공기술 개발)

  • 이응숙
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.435-440
    • /
    • 2000
  • In this study, we aims to develop the machining technology for the ultra precision surface and profile accuracy. For this purpose, we construct the electrolytic in process grinding system (ELID grinding) and apply to the cylindrical and internal grinding. Through the various machining experiments such as SCM steel., ceramics, tungsten carbide etc., we have obtained nanometer surface roughness. And we have applied this mirror grinding technique to hydraulic manual valve and mold core of mini disk optical pick-up base. For the development of fine mechanical part machining technology, e have made multi fiber optical connector using fine grinding technology. And constructed micro drilling system with process monitoring system which is possible to drill 50${\mu}{\textrm}{m}$ diameter hole.

  • PDF

Improvement of Hong-Ou-Mandel Interference Visibility by Using a Single-Mode Optical-Fiber Photon Collector (단일모드 광섬유 집광기를 이용한 Hong-Ou-Mandel 간섭 가시도 향상)

  • Han, Sung-Wook;Kim, Heonoh;Seo, Joo Yeon;Kim, Myung-Whun
    • New Physics: Sae Mulli
    • /
    • v.68 no.12
    • /
    • pp.1374-1377
    • /
    • 2018
  • We achieved 95% visibility in the Hong-Ou-Mandel interference experiment while we achieved only 56% visibility in a previous report. We used a 120 mW 405 nm single-mode continuous wave laser, a 5-mm-thick type-1 ${\beta}$-barium borate single crystal, standard Hong-Ou-Mandel interferometer optics, two avalanche photodiode single-photon counters, and a homemade coincidence counting unit. The photon collection unit was the key difference between the present study and the previous study. In the present experiment, we used single-mode optical fibers for photon collection, which suppressed accidental coincidence between-different mode photons by acting as a spatial filter because of its core size being much smaller than a multi-mode fiber.

Organo-Compatible Gate Dielectrics for High-performance Organic Field-effect Transistors (고성능 유기 전계효과 트랜지스터를 위한 유기친화 게이트 절연층)

  • Lee, Minjung;Lee, Seulyi;Yoo, Jaeseok;Jang, Mi;Yang, Hoichang
    • Applied Chemistry for Engineering
    • /
    • v.24 no.3
    • /
    • pp.219-226
    • /
    • 2013
  • Organic semiconductor-based soft electronics has potential advantages for next-generation electronics and displays, which request mobile convenience, flexibility, light-weight, large area, etc. Organic field-effect transistors (OFET) are core elements for soft electronic applications, such as e-paper, e-book, smart card, RFID tag, photovoltaics, portable computer, sensor, memory, etc. An optimal multi-layered structure of organic semiconductor, insulator, and electrodes is required to achieve high-performance OFET. Since most organic semiconductors are self-assembled structures with weak van der Waals forces during film formation, their crystalline structures and orientation are significantly affected by environmental conditions, specifically, substrate properties of surface energy and roughness, changing the corresponding OFET. Organo-compatible insulators and surface treatments can induce the crystal structure and orientation of solution- or vacuum-processable organic semiconductors preferential to the charge-carrier transport in OFET.

A Photonic Packet Switch for Wavelength-Division Mdltiplexed Networks (파장다중 네트워크에 사용될 광 패킷 스위치 구조)

  • 최영복;김해근;주성순;이상화
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.10C
    • /
    • pp.937-944
    • /
    • 2002
  • The current fast-growing Internet traffic is demanding more and more network capacity. Photonic packet switching offers high-speed, data rate/format transparency, and configurability, which are some of the important characteristics needed in future networks supporting different forms of data. In this paper, we define that optical backbone networks for IP transport consist of optical packet core switches and optical fibers. We propose a multi-link photonic packet switch managing as single media which unifies the whole bandwidth of multiple wavelengths on the optical fiber in the WDM optical networks. The proposed switch uses optical packet memories of output link equally as well as using the WDM buffer. So it cuts down the required number of buffers and realizes of the optical packet memory economically.

Wireless sensor networks for permanent health monitoring of historic buildings

  • Zonta, Daniele;Wu, Huayong;Pozzi, Matteo;Zanon, Paolo;Ceriotti, Matteo;Mottola, Luca;Picco, Gian Pietro;Murphy, Amy L.;Guna, Stefan;Corra, Michele
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.595-618
    • /
    • 2010
  • This paper describes the application of a wireless sensor network to a 31 meter-tall medieval tower located in the city of Trento, Italy. The effort is motivated by preservation of the integrity of a set of frescoes decorating the room on the second floor, representing one of most important International Gothic artworks in Europe. The specific application demanded development of customized hardware and software. The wireless module selected as the core platform allows reliable wireless communication at low cost with a long service life. Sensors include accelerometers, deformation gauges, and thermometers. A multi-hop data collection protocol was applied in the software to improve the system's flexibility and scalability. The system has been operating since September 2008, and in recent months the data loss ratio was estimated as less than 0.01%. The data acquired so far are in agreement with the prediction resulting a priori from the 3-dimensional FEM. Based on these data a Bayesian updating procedure is employed to real-time estimate the probability of abnormal condition states. This first period of operation demonstrated the stability and reliability of the system, and its ability to recognize any possible occurrence of abnormal conditions that could jeopardize the integrity of the frescos.