• Title/Summary/Keyword: multi-component system

Search Result 472, Processing Time 0.029 seconds

Multiple Fault Diagnosis Method by Modular Artificial Neural Network (모듈신경망을 이용한 다중고장 진단기법)

  • 배용환;이석희
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.2
    • /
    • pp.35-44
    • /
    • 1998
  • This paper describes multiple fault diagnosis method in complex system with hierarchical structure. Complex system is divided into subsystem, item and component. For diagnosing this hierarchical complex system, it is necessary to implement special neural network. We introduced Modular Artificial Neural Network(MANN) for this purpose. MANN consists of four level neural network, first level for symptom classification, second level for item fault diagnosis, third level for component symptom classification, forth level for component fault diagnosis. Each network is multi layer perceptron with 7 inputs, 30 hidden node and 7 outputs trained by backpropagation. UNIX IPC(Inter Process Communication) is used for implementing MANN with multitasking and message transfer between processes in SUN workstation. We tested MANN in reactor system.

  • PDF

STATUS AND PERSPECTIVE OF TWO-PHASE FLOW MODELLING IN THE NEPTUNE MULTISCALE THERMAL-HYDRAULIC PLATFORM FOR NUCLEAR REACTOR SIMULATION

  • BESTION DOMINIQUE;GUELFI ANTOINE;DEN/EER/SSTH CEA-GRENOBLE,
    • Nuclear Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.511-524
    • /
    • 2005
  • Thermalhydraulic reactor simulation of tomorrow will require a new generation of codes combining at least three scales, the CFD scale in open medium, the component scale and the system scale. DNS will be used as a support for modelling more macroscopic models. NEPTUNE is such a new generation multi-scale platform developed jointly by CEA-DEN and EDF-R&D and also supported by IRSN and FRAMATOME-ANP. The major steps towards the next generation lie in new physical models and improved numerical methods. This paper presents the advances obtained so far in physical modelling for each scale. Macroscopic models of system and component scales include multi-field modelling, transport of interfacial area, and turbulence modelling. Two-phase CFD or CMFD was first applied to boiling bubbly flow for departure from nucleate boiling investigations and to stratified flow for pressurised thermal shock investigations. The main challenges of the project are presented, some selected results are shown for each scale, and the perspectives for future are also drawn. Direct Numerical Simulation tools with Interface Tracking Techniques are also developed for even smaller scale investigations leading to a better understanding of basic physical processes and allowing the development of closure relations for macroscopic and CFD models.

An Approach to Improve the Contrast of Multi Scale Fusion Methods

  • Hwang, Tae Hun;Kim, Jin Heon
    • Journal of Multimedia Information System
    • /
    • v.5 no.2
    • /
    • pp.87-90
    • /
    • 2018
  • Various approaches have been proposed to convert low dynamic range (LDR) to high dynamic range (HDR). Of these approaches, the Multi Scale Fusion (MSF) algorithm based on Laplacian pyramid decomposition is used in many applications and demonstrates its usefulness. However, the pyramid fusion technique has no means for controlling the luminance component because the total number of pixels decreases as the pyramid rises to the upper layer. In this paper, we extract the reflection light of the image based on the Retinex theory and generate the weight map by adjusting the reflection component. This weighting map is applied to achieve an MSF-like effect during image fusion and provides an opportunity to control the brightness components. Experimental results show that the proposed method maintains the total number of pixels and exhibits similar effects to the conventional method.

Atmospheric Pressure Loading Effects on Multi-GNSS Kinematic PPP

  • Choi, Byung-Kyu;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.1
    • /
    • pp.29-34
    • /
    • 2021
  • Recently, many studies have considered the effect of atmospheric pressure loading (APL) on precise global navigation satellite system (GNSS) data processing. The APL deforms the Earth's crust. It can often exceed 10 mm in radial displacement. In this study, we analyze the APL effect on Multi-GNSS kinematic precise point positioning (PPP). In addition, observations received at two GNSS reference stations (DAEJ and SUWN) in South Korea were processed. The absolute position changes for the two stations were compared to before and after applying the APL effects from January 1 to February 29, 2020. The crust of South Korea was most affected by the APL in the up direction. With the APL model, the difference in daily position changes was mostly within 4 mm in the radial direction. On the other hand, the horizontal components (east-west and north-south) were relatively less affected than the radial component.

An Architecture-based Multi-level Self-Adaptive Monitoring Method for Software Fault Detection (소프트웨어 오류 탐지를 위한 아키텍처 기반의 다계층적 자가적응형 모니터링 방법)

  • Youn, Hyun-Ji;Park, Soo-Yong
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.7
    • /
    • pp.568-572
    • /
    • 2010
  • Self-healing is one of the techniques that assure dependability of mission-critical system. Self-healing consists of fault detection and fault recovery and fault detection is important first step that enables fault recovery but it causes overhead. We can detect fault based on model, the detection tasks that notify system's behavior and compare normal behavior model and system's behavior are heavy jobs. In this paper, we propose architecture-based multi-level self-adaptive monitoring method that complements model-based fault detection. The priority of fault detection per component is different in the software architecture. Because the seriousness and the frequency of fault per component are different. If the monitor is adapted to intensive to the component that has high priority of monitoring and loose to the component that has low priority of monitoring, the overhead can be decreased and the efficiency can be maintained. Because the environmental changes of software and the architectural changes bring the changes at the priority of fault detection, the monitor learns the changes of fault frequency and that is adapted to intensive to the component that has high priority of fault detection.

PDA-based Text Extraction System using Client/Server Architecture (Client/Server구조를 이용한 PDA기반의 문자 추출 시스템)

  • Park Anjin;Jung Keechul
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.2
    • /
    • pp.85-98
    • /
    • 2005
  • Recently, a lot of researches about mobile vision using Personal Digital Assistant(PDA) has been attempted. Many CPUs for PDA are integer CPUs, which have no floating-computation component. It results in slow computation of the algorithms peformed by vision system or image processing, which have much floating-computation. In this paper, in order to resolve this weakness, we propose the Client(PDA)/server(PC) architecture which is connected to each other with a wireless LAN, and we construct the system with pipelining processing using two CPUs of the Client(PDA) and the Server(PC) in image sequence. The Client(PDA) extracts tentative text regions using Edge Density(ED). The Server(PC) uses both the Multi-1.aver Perceptron(MLP)-based texture classifier and Connected Component(CC)-based filtering for a definite text extraction based on the Client(PDA)'s tentativel99-y extracted results. The proposed method leads to not only efficient text extraction by using both the MLP and the CC, but also fast running time using Client(PDA)/server(PC) architecture with the pipelining processing.

A basic study on ignitor for lean burn (희박연소용 점화장치에 대한 기초연구)

  • Lee, Sang-Jun;Na, Seong-O;Lee, Jong-Tae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.1
    • /
    • pp.36-48
    • /
    • 1997
  • In order to establish the ignition system for lean burn, the influence of the number of spark plug, spark times and spark intervals on discharge pattern of spark energy on ignitability and combustion characteristics were evaluated. It showed that, ignitability remarkably increased with the case of multiple spark ignition system than with the case of single spark and the lean limit extended fuel/air equivalence ratio by 0.1, the increase of magnitude and lasting time of capacity component and inductance component was multi spark discharge in a row.

Telioform System A New Multi Component Organic/Inorganic System From Ciba Specialty Chemicals

  • Min, Byung-Jin;Lim, Kyung-Bin;Ford, Phil
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.11a
    • /
    • pp.57-70
    • /
    • 2006
  • Microparticle and micropolymer retention and drainage aid systems are powerful tools for paper and board making on a variety of machines. Drawbacks attributed to the current systems sometimes include; apparent high cost, production and quality problems and in some cases a negative effect on formation. The next generation multi-component organic/inorganic systems have demonstrated their ability to decouple the effects of retention and drainage and to improve the formation and print quality for the same retention and in some cases higher retention levels. It is now possible to optimize independently retention, drainage and formation effects with the same high return on investment of current microparticle systems.

  • PDF

Warranty cost anlaysis for multi-component systems with imperfect repair

  • Park, Minjae
    • International Journal of Reliability and Applications
    • /
    • v.15 no.1
    • /
    • pp.51-64
    • /
    • 2014
  • This paper develops a warranty cost model for complex systems with imperfect repair within a warranty period by addressing a practical case that the first inter-failure interval is longer than any other inter-failure intervals. The product is in its best condition before the first failure if repair is imperfect. After the imperfect repair, other inter-failure intervals which are explained by renewal processes, are stochastically smaller than the first inter-failure interval. Based on this idea, we suggest the failure-interval-failure-criterion model. In this model, we consider two random variables, X and Y where X represents failure intervals and Y represents failure criterion. We also obtain the distribution of the number of failures and conduct the warranty cost analysis. We investigate different types of warranty cost models, reliabilities and other measures for various systems including series-parallel configurations. Several numerical examples are discussed to demonstrate the applicability of the methodologies derived in the paper.

  • PDF

Cost analysis on renewable warranty policies subject to imperfect strategies using inter-failure intervals

  • Park, Minjae
    • International Journal of Reliability and Applications
    • /
    • v.14 no.1
    • /
    • pp.41-54
    • /
    • 2013
  • In this paper, cost analysis is conducted using inter-failure interval under renewable warranty subject to imperfect repair for multi-component system. One way to model the imperfect repair is to use the quasi-renewal process (Wang and Pham 1996). Two alternative quasi-renewal processes were suggested by Park and Pham (2010) using quasi-renewal process; first is an altered quasi-renewal process with random variable parameter and second is a mixed quasi-renewal process considering replacement service and repair service, simultaneously. In this study, we use the altered and mixed quasi-renewal processes and develop the warranty cost model to obtain the expected value of warranty cost and to help company make important decisions regarding the warranty policy. Numerical examples are used to demonstrate the applicability of the methodology derived in the paper.

  • PDF