• Title/Summary/Keyword: multi-class support vector machine

Search Result 76, Processing Time 0.023 seconds

Wildfire Severity Mapping Using Sentinel Satellite Data Based on Machine Learning Approaches (Sentinel 위성영상과 기계학습을 이용한 국내산불 피해강도 탐지)

  • Sim, Seongmun;Kim, Woohyeok;Lee, Jaese;Kang, Yoojin;Im, Jungho;Kwon, Chunguen;Kim, Sungyong
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_3
    • /
    • pp.1109-1123
    • /
    • 2020
  • In South Korea with forest as a major land cover class (over 60% of the country), many wildfires occur every year. Wildfires weaken the shear strength of the soil, forming a layer of soil that is vulnerable to landslides. It is important to identify the severity of a wildfire as well as the burned area to sustainably manage the forest. Although satellite remote sensing has been widely used to map wildfire severity, it is often difficult to determine the severity using only the temporal change of satellite-derived indices such as Normalized Difference Vegetation Index (NDVI) and Normalized Burn Ratio (NBR). In this study, we proposed an approach for determining wildfire severity based on machine learning through the synergistic use of Sentinel-1A Synthetic Aperture Radar-C data and Sentinel-2A Multi Spectral Instrument data. Three wildfire cases-Samcheok in May 2017, Gangreung·Donghae in April 2019, and Gosung·Sokcho in April 2019-were used for developing wildfire severity mapping models with three machine learning algorithms (i.e., Random Forest, Logistic Regression, and Support Vector Machine). The results showed that the random forest model yielded the best performance, resulting in an overall accuracy of 82.3%. The cross-site validation to examine the spatiotemporal transferability of the machine learning models showed that the models were highly sensitive to temporal differences between the training and validation sites, especially in the early growing season. This implies that a more robust model with high spatiotemporal transferability can be developed when more wildfire cases with different seasons and areas are added in the future.

Detection of Abnormal Heartbeat using Hierarchical Qassification in ECG (계층구조적 분류모델을 이용한 심전도에서의 비정상 비트 검출)

  • Lee, Do-Hoon;Cho, Baek-Hwan;Park, Kwan-Soo;Song, Soo-Hwa;Lee, Jong-Shill;Chee, Young-Joon;Kim, In-Young;Kim, Sun-Il
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.6
    • /
    • pp.466-476
    • /
    • 2008
  • The more people use ambulatory electrocardiogram(ECG) for arrhythmia detection, the more researchers report the automatic classification algorithms. Most of the previous studies don't consider the un-balanced data distribution. Even in patients, there are much more normal beats than abnormal beats among the data from 24 hours. To solve this problem, the hierarchical classification using 21 features was adopted for arrhythmia abnormal beat detection. The features include R-R intervals and data to describe the morphology of the wave. To validate the algorithm, 44 non-pacemaker recordings from physionet were used. The hierarchical classification model with 2 stages on domain knowledge was constructed. Using our suggested method, we could improve the performance in abnormal beat classification from the conventional multi-class classification method. In conclusion, the domain knowledge based hierarchical classification is useful to the ECG beat classification with unbalanced data distribution.

Face Identification Using a Near-Infrared Camera in a Nonrestrictive In-Vehicle Environment (적외선 카메라를 이용한 비제약적 환경에서의 얼굴 인증)

  • Ki, Min Song;Choi, Yeong Woo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.3
    • /
    • pp.99-108
    • /
    • 2021
  • There are unrestricted conditions on the driver's face inside the vehicle, such as changes in lighting, partial occlusion and various changes in the driver's condition. In this paper, we propose a face identification system in an unrestricted vehicle environment. The proposed method uses a near-infrared (NIR) camera to minimize the changes in facial images that occur according to the illumination changes inside and outside the vehicle. In order to process a face exposed to extreme light, the normal face image is changed to a simulated overexposed image using mean and variance for training. Thus, facial classifiers are simultaneously generated under both normal and extreme illumination conditions. Our method identifies a face by detecting facial landmarks and aggregating the confidence score of each landmark for the final decision. In particular, the performance improvement is the highest in the class where the driver wears glasses or sunglasses, owing to the robustness to partial occlusions by recognizing each landmark. We can recognize the driver by using the scores of remaining visible landmarks. We also propose a novel robust rejection and a new evaluation method, which considers the relations between registered and unregistered drivers. The experimental results on our dataset, PolyU and ORL datasets demonstrate the effectiveness of the proposed method.

Hierarchical Internet Application Traffic Classification using a Multi-class SVM (다중 클래스 SVM을 이용한 계층적 인터넷 애플리케이션 트래픽의 분류)

  • Yu, Jae-Hak;Lee, Han-Sung;Im, Young-Hee;Kim, Myung-Sup;Park, Dai-Hee
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.1
    • /
    • pp.7-14
    • /
    • 2010
  • In this paper, we introduce a hierarchical internet application traffic classification system based on SVM as an alternative overcoming the uppermost limit of the conventional methodology which is using the port number or payload information. After selecting an optimal attribute subset of the bidirectional traffic flow data collected from the campus, the proposed system classifies the internet application traffic hierarchically. The system is composed of three layers: the first layer quickly determines P2P traffic and non-P2P traffic using a SVM, the second layer classifies P2P traffics into file-sharing, messenger, and TV, based on three SVDDs. The third layer makes specific classification of the entire 16 application traffics. By classifying the internet application traffic finely or coarsely, the proposed system can guarantee an efficient system resource management, a stable network environment, a seamless bandwidth, and an appropriate QoS. Also, even a new application traffic is added, it is possible to have a system incremental updating and scalability by training only a new SVDD without retraining the whole system. We validate the performance of our approach with computer experiments.

Steel Plate Faults Diagnosis with S-MTS (S-MTS를 이용한 강판의 표면 결함 진단)

  • Kim, Joon-Young;Cha, Jae-Min;Shin, Junguk;Yeom, Choongsub
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.1
    • /
    • pp.47-67
    • /
    • 2017
  • Steel plate faults is one of important factors to affect the quality and price of the steel plates. So far many steelmakers generally have used visual inspection method that could be based on an inspector's intuition or experience. Specifically, the inspector checks the steel plate faults by looking the surface of the steel plates. However, the accuracy of this method is critically low that it can cause errors above 30% in judgment. Therefore, accurate steel plate faults diagnosis system has been continuously required in the industry. In order to meet the needs, this study proposed a new steel plate faults diagnosis system using Simultaneous MTS (S-MTS), which is an advanced Mahalanobis Taguchi System (MTS) algorithm, to classify various surface defects of the steel plates. MTS has generally been used to solve binary classification problems in various fields, but MTS was not used for multiclass classification due to its low accuracy. The reason is that only one mahalanobis space is established in the MTS. In contrast, S-MTS is suitable for multi-class classification. That is, S-MTS establishes individual mahalanobis space for each class. 'Simultaneous' implies comparing mahalanobis distances at the same time. The proposed steel plate faults diagnosis system was developed in four main stages. In the first stage, after various reference groups and related variables are defined, data of the steel plate faults is collected and used to establish the individual mahalanobis space per the reference groups and construct the full measurement scale. In the second stage, the mahalanobis distances of test groups is calculated based on the established mahalanobis spaces of the reference groups. Then, appropriateness of the spaces is verified by examining the separability of the mahalanobis diatances. In the third stage, orthogonal arrays and Signal-to-Noise (SN) ratio of dynamic type are applied for variable optimization. Also, Overall SN ratio gain is derived from the SN ratio and SN ratio gain. If the derived overall SN ratio gain is negative, it means that the variable should be removed. However, the variable with the positive gain may be considered as worth keeping. Finally, in the fourth stage, the measurement scale that is composed of selected useful variables is reconstructed. Next, an experimental test should be implemented to verify the ability of multi-class classification and thus the accuracy of the classification is acquired. If the accuracy is acceptable, this diagnosis system can be used for future applications. Also, this study compared the accuracy of the proposed steel plate faults diagnosis system with that of other popular classification algorithms including Decision Tree, Multi Perception Neural Network (MLPNN), Logistic Regression (LR), Support Vector Machine (SVM), Tree Bagger Random Forest, Grid Search (GS), Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). The steel plates faults dataset used in the study is taken from the University of California at Irvine (UCI) machine learning repository. As a result, the proposed steel plate faults diagnosis system based on S-MTS shows 90.79% of classification accuracy. The accuracy of the proposed diagnosis system is 6-27% higher than MLPNN, LR, GS, GA and PSO. Based on the fact that the accuracy of commercial systems is only about 75-80%, it means that the proposed system has enough classification performance to be applied in the industry. In addition, the proposed system can reduce the number of measurement sensors that are installed in the fields because of variable optimization process. These results show that the proposed system not only can have a good ability on the steel plate faults diagnosis but also reduce operation and maintenance cost. For our future work, it will be applied in the fields to validate actual effectiveness of the proposed system and plan to improve the accuracy based on the results.

A Study on the Prediction Model of Stock Price Index Trend based on GA-MSVM that Simultaneously Optimizes Feature and Instance Selection (입력변수 및 학습사례 선정을 동시에 최적화하는 GA-MSVM 기반 주가지수 추세 예측 모형에 관한 연구)

  • Lee, Jong-sik;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.4
    • /
    • pp.147-168
    • /
    • 2017
  • There have been many studies on accurate stock market forecasting in academia for a long time, and now there are also various forecasting models using various techniques. Recently, many attempts have been made to predict the stock index using various machine learning methods including Deep Learning. Although the fundamental analysis and the technical analysis method are used for the analysis of the traditional stock investment transaction, the technical analysis method is more useful for the application of the short-term transaction prediction or statistical and mathematical techniques. Most of the studies that have been conducted using these technical indicators have studied the model of predicting stock prices by binary classification - rising or falling - of stock market fluctuations in the future market (usually next trading day). However, it is also true that this binary classification has many unfavorable aspects in predicting trends, identifying trading signals, or signaling portfolio rebalancing. In this study, we try to predict the stock index by expanding the stock index trend (upward trend, boxed, downward trend) to the multiple classification system in the existing binary index method. In order to solve this multi-classification problem, a technique such as Multinomial Logistic Regression Analysis (MLOGIT), Multiple Discriminant Analysis (MDA) or Artificial Neural Networks (ANN) we propose an optimization model using Genetic Algorithm as a wrapper for improving the performance of this model using Multi-classification Support Vector Machines (MSVM), which has proved to be superior in prediction performance. In particular, the proposed model named GA-MSVM is designed to maximize model performance by optimizing not only the kernel function parameters of MSVM, but also the optimal selection of input variables (feature selection) as well as instance selection. In order to verify the performance of the proposed model, we applied the proposed method to the real data. The results show that the proposed method is more effective than the conventional multivariate SVM, which has been known to show the best prediction performance up to now, as well as existing artificial intelligence / data mining techniques such as MDA, MLOGIT, CBR, and it is confirmed that the prediction performance is better than this. Especially, it has been confirmed that the 'instance selection' plays a very important role in predicting the stock index trend, and it is confirmed that the improvement effect of the model is more important than other factors. To verify the usefulness of GA-MSVM, we applied it to Korea's real KOSPI200 stock index trend forecast. Our research is primarily aimed at predicting trend segments to capture signal acquisition or short-term trend transition points. The experimental data set includes technical indicators such as the price and volatility index (2004 ~ 2017) and macroeconomic data (interest rate, exchange rate, S&P 500, etc.) of KOSPI200 stock index in Korea. Using a variety of statistical methods including one-way ANOVA and stepwise MDA, 15 indicators were selected as candidate independent variables. The dependent variable, trend classification, was classified into three states: 1 (upward trend), 0 (boxed), and -1 (downward trend). 70% of the total data for each class was used for training and the remaining 30% was used for verifying. To verify the performance of the proposed model, several comparative model experiments such as MDA, MLOGIT, CBR, ANN and MSVM were conducted. MSVM has adopted the One-Against-One (OAO) approach, which is known as the most accurate approach among the various MSVM approaches. Although there are some limitations, the final experimental results demonstrate that the proposed model, GA-MSVM, performs at a significantly higher level than all comparative models.