• Title/Summary/Keyword: multi-channel MAC

Search Result 92, Processing Time 0.037 seconds

A Study of Collision Avoidance Algorithm Based on Multi-Beacon in the Vehicular Ad-hoc Network (VANET 환경에서 멀티 비콘을 적용한 충돌 회피 알고리즘에 관한 연구)

  • Kim, Jae-Wan;Eom, Doo-Seop
    • Journal of Information Technology Services
    • /
    • v.11 no.4
    • /
    • pp.195-213
    • /
    • 2012
  • In ubiquitous environments, the Intelligent Transportation System (ITS) protocol is a typical service used to improve the quality of life for humans. The Vehicular Ad-hoc Network (VANET) protocol, a part of ITS, needs further study with regards to its support for high reliability, high speed mobility, data transmission efficiency, and so on. The IEEE 802.11 standard provides a high data rate channel, but it was designed for peer-to-peer network protocols. IEEE 802.11p also provides a high data rate channel, however, it only facilitates communication between roadside and on-board equipment. A VANET has characteristics that enable its topology to change rapidly; it can also be expanded to a multi-hop range network during communication. Therefore, the VANET protocol needs a way to infer the current topology information relating to VANET equipped vehicles. In this paper, we present the Multi-Beacon MAC Protocol, and propose a method to resolve the problem of beacon collisions in VANET through the use of this Multi-Beacon MAC protocol. Evaluation of the performance of Multi-Beacon MAC protocol by means of both mathematical analyses and simulation experiments indicate that the proposed method can effectively reduce beacon collisions and improve the throughput and the delay between vehicles in VANET systems.

Reinforcement Learning based Multi-Channel MAC Protocol for Cognitive Radio Ad-hoc Networks (인지무선 에드혹 네트워크를 위한 강화학습기반의 멀티채널 MAC 프로토콜)

  • Park, Hyung-Kun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.7
    • /
    • pp.1026-1031
    • /
    • 2022
  • Cognitive Radio Ad-Hoc Networks (CRAHNs) enable to overcome the shortage of frequency resources due to the increase of radio services. In order to avoid interference with the primary user in CRANH, channel sensing to check the idle channel is required, and when the primary user appears, the time delay due to handover should be minimized through fast idle channel selection. In this paper, throughput was improved by reducing the number of channel sensing and preferentially sensing a channel with a high probability of being idle, using reinforcement learning. In addition, we proposed a multi-channel MAC (Medium Access Control) protocol that can minimize the possibility of collision with the primary user by sensing the channel at the time of data transmission without performing periodic sensing. The performance was compared and analyzed through computer simulation.

Cognitive Radio Based Jamming Resilient Multi-channel MAC Protocol for Wireless Network

  • Htike, Zaw;Hong, Choong Seon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.11a
    • /
    • pp.679-680
    • /
    • 2009
  • Radio jamming attack is the most effective and easiest Denial-of-Service (DOS) attack in wireless network. In this paper, we proposed a multi-channel MAC protocol to mitigate the jamming attacks by using cognitive radio. The Cognitive Radio (CR) technology supports real-time spectrum sensing and fast channel switching. By using CR technologies, the legitimate nodes can perform periodic spectrum sensing to identify jamming free channels and when the jamming attack is detected, it can switch to un-jammed channel with minimum channel switching delay. In our proposed protocol, these two CR technologies are exploited for thwarting the jamming attacks.

The design and implementation of security kernel assured trusted path (신뢰경로가 보장되는 보안커널 설계 및 구현)

  • 이해균;김재명;조인준
    • Proceedings of the Korea Institutes of Information Security and Cryptology Conference
    • /
    • 2001.11a
    • /
    • pp.340-347
    • /
    • 2001
  • Security operating system applied to MAC(Mandatory Access Control) or to MLS(Multi Level Security) gives both subject and object both Security Level and value of Category, and it restrict access to object from subject. But it violates Security policy of system and could be a circulated course of illegal information. This is correctly IPC(Interprocess Communication)mechanism and Covert Channel. In this thesis, I tried to design and implementation as OS kernel in order not only to give confidence of information circulation in the Security system, but also to defend from Covert Channel by Storage and IPC mechanism used as a circulated course of illegal information. For removing a illegal information flow by IPC mechanism. I applied IPC mechanism to MLS Security policy, and I made Storage Covert Channel analyze system call Spec. and than distinguish Storage Covert Channel. By appling auditing and delaying, I dealt with making low bandwidth.

  • PDF

Multi-Channel Pipelining for Energy Efficiency and Delay Reduction in Wireless Sensor Network (무선 센서 네트워크에서 에너지 효율성과 지연 감소를 위한 다중 채널 파리프라인 기법)

  • Lee, Yoh-Han;Kim, Daeyoung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.11
    • /
    • pp.11-18
    • /
    • 2014
  • Most of the energy efficient MAC protocols for wireless sensor networks (WSNs) are based on duty cycling in a single channel and show competitive performances in a small number of traffic flows; however, under concurrent multiple flows, they result in significant performance degradation due to contention and collision. We propose a multi-channel pipelining (MCP) method for convergecast WSN in order to address these problems. In MCP, a staggered dynamic phase shift (SDPS) algorithms devised to minimize end-to-end latency by dynamically staggering wake-up schedule of nodes on a multi-hop path. Also, a phase-locking identification (PLI) algorithm is proposed to optimize energy efficiency. Based on these algorithms, multiple flows can be dynamically pipelined in one of multiple channels and successively handled by sink switched to each channel. We present an analytical model to compute the duty cycle and the latency of MCP and validate the model by simulation. Simulation evaluation shows that our proposal is superior to existing protocols: X-MAC and DPS-MAC in terms of duty cycle, end-to-end latency, delivery ratio, and aggregate throughput.

A Multi-Service MAC Protocol in a Multi-Channel CSMA/CA for IEEE 802.11 Networks

  • Ben-Othman, Jalel;Castel, Hind;Mokdad, Lynda
    • Journal of Communications and Networks
    • /
    • v.10 no.3
    • /
    • pp.287-296
    • /
    • 2008
  • The IEEE 802.11 wireless standard uses the carrier sense multiple access with collision avoidance (CSMA/CA) as its MAC protocol (during the distributed coordination function period). This protocol is an adaptation of the CSMA/CD of the wired networks. CSMA/CA mechanism cannot guarantee quality of service (QoS) required by the application because orits random access method. In this study, we propose a new MAC protocol that considers different types of traffic (e.g., voice and data) and for each traffic type different priority levels are assigned. To improve the QoS of IEEE 802.11 MAC protocols over a multi-channel CSMA/CA, we have developed a new admission policy for both voice and data traffics. This protocol can be performed in direct sequence spread spectrum (DSSS) or frequency hopping spread spectrum (FHSS). For voice traffic we reserve a channel, while for data traffic the access is random using a CSMA/CA mechanism, and in this case a selective reject and push-out mechanism is added to meet the quality of service required by data traffic. To study the performance of the proposed protocol and to show the benefits of our design, a mathematical model is built based on Markov chains. The system could be represented by a Markov chain which is difficult to solve as the state-space is too large. This is due to the resource management and user mobility. Thus, we propose to build an aggregated Markov chain with a smaller state-space that allows performance measures to be computed easily. We have used stochastic comparisons of Markov chains to prove that the proposed access protocol (with selective reject and push-out mechanisms) gives less loss rates of high priority connections (data and voices) than the traditional one (without admission policy and selective reject and push-out mechanisms). We give numerical results to confirm mathematical proofs.

Performance Analysis of IEEE 802.11n System adapting Frame Aggregation Methods (Frame Aggregation 기법을 적용한 IEEE 802.11n 시스템 성능 분석)

  • Lee, Yun-Ho;Kim, Joo-Seok;Kim, Kyung-Seok
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.12
    • /
    • pp.515-527
    • /
    • 2009
  • IEEE 802.11n is an ongoing next-generation WLAN(Wireless Local Area Network) standard that supports a very high-speed connection with more than 100Mb/s data throughput measured at the MAC(Medium Access Control) layer. Study trends of IEEE 802.11n show two aspects, enhanced data throughput using aggregation among packets in MAC layer, and better data rates adapting MIMO(Multiple-Input Multiple-Output) in PHY(Physical) layer. But, the former doesn't consider wireless channel and the latter doesn't consider aggregation among packets for reality. Therefore, this paper analyzes data throughput for IEEE 802.11n considering MAC and PHY connection. A-MPDU(Aggregation-MAC Protocol Data Unit) and A-MSDU(Aggregation-MAC Service Unit) is adapted considering multi-service in MAC layer, WLAN MIMO TGn channel using SVD(Singular Value Decomposition) is adapted considering MIMO and wireless channel in PHY layer. Consequently, Simulation results shows throughput between A-MPDU and A-MSDU. Also, We use Ns-2(Network simulator-2) for reality.

Centralized Channel Allocation Schemes for Incomplete Medium Sharing Systems with General Channel Access Constraints (불완전매체공유 시스템을 위한 집중방식 채널할당기법)

  • Kim Dae-Woo;Lee Byoung-Seok;Choe Jin-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.3B
    • /
    • pp.183-198
    • /
    • 2006
  • We define the incomplete medium sharing system as a multi-channel shared medium communication system where constraints are imposed to the set of channels that may be allocated to some transmitter-receiver node pairs. To derive a centralized MAC scheme of a incomplete medium sharing system, we address the problem of optimal channel allocation The optimal channel allocation problem is then translated into a max-flow problem in a multi-commodity flow graph, and it is shown that the optimal solution can then be obtained by solving a linear programming problem. In addition, two suboptimal channel allocation schemes are proposed to bring down the computational complexity to a practical/feasible level; (1) one is a modified iSLIP channel allocation scheme, (2) the other is sequential channel allocation scheme. From the results of a extensive set of numerical experiments, it is found that the suboptimal schemes evaluate channel utilization close to that of the optimal schemes while requiring much less amount of computation than the optimal scheme. In particular, the sequential channel allocation scheme is shown to achieve higher channel utilization with less computational complexity than . the modified iSLIP channel allocation scheme.

Development of Clustering-Based Multi-Channel MAC Protocol to Improve Efficiency of Network in VANET (차량 환경에서 통신 효율 향상을 위한 클러스터링 기반의 멀티채널 매체접속제어 프로토콜 개발)

  • Jung, Sung-Dae;Lee, Seung-Jin;Lee, Sang-Sun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.5B
    • /
    • pp.463-468
    • /
    • 2009
  • In VANET(Vheicle Ad hoc Network), the researches based on the wireless LAN are conducting and the method based on 802.11a is being adapted in IEEE 802.11p WAVE(Wireless Access in Vehicular Environments). However, wireless LAN which uses a single channel in a competition can cause transmission delays because of a frequent collision and a use of CSMA/CA to avoid competition in VANET requiring a fast access. In this paper, we designed CMMP (Clustering based Multi-channel MAC protocol) adequate to VANET and then confirmed the appropriate channel conditions in a V2V communication on the basis of this protocol. The simulation results showed that a packet collision and a transmission delay by the use of an existing single channel based on the contention decreased more than 60% by CMMP.

A Scheduling MAC protocol for Multi-Channel Multi-Radio Wi-Fi Mesh Networks (다중 채널 다중 라디오 Wi-Fi 메쉬 네트워크에서 스케줄링 MAC 프로토콜)

  • Wu, Ledan;Jeong, Han-You
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06d
    • /
    • pp.311-314
    • /
    • 2011
  • Wi-Fi 메쉬 네트워크는 IEEE 802.11 표준을 기반으로 노트북, 스마트폰 등의 무선 단말에 인터넷 연결을 제공하기 위한 무선 다중 홉 네트워크이다. Wi-Fi 메쉬 네트워크에서는 무선 채널의 방송 특징으로 인해 발생하는 간섭(Interference) 때문에 프레임 충돌 문제가 발생한다. 본 논문에서는 이러한 프레임 간섭을 미연에 방지하는 스케줄링 MAC 프로토콜을 제안한다. 제안하는 방법은 각각의 무선 채널에서 간섭 조건을 만족하는 링크 조합을 결정하고, 이를 통하여 Wi-Fi 메쉬 네트워크의 프레임 전달 수율(Throughput)을 극대화함을 목표로 한다. 시뮬레이션 결과를 통해 본 논문에서 제시하는 스케줄링 MAC 프로토콜이 기존에 알려진 CSMA/CA 기반의 MAC 프로토콜에 비해 수율을 50 % 이상 향상함을 보인다.