• Title/Summary/Keyword: multi-body problem

Search Result 113, Processing Time 0.025 seconds

Kinematic and Kinetic Analysis of the Soft Golf Swing using Realistic 3D Modeling Based on 3D Motion Tracking

  • Kim, Yong-Yook;Kim, Sung-Hyun;Kim, Nam-Gyun
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.6
    • /
    • pp.744-749
    • /
    • 2007
  • Kinematic and kinetic analysis has been performed for Soft Golf swings utilizing realistic three dimensional computer simulations based on three dimensional motion tracking data. Soft Golf is a newly developed recreational sport in South Korea aimed to become a safe and easy-to-learn sport for all ages. The advantage of Soft Golf stems from lighter weight of the club and much larger area of the sweet spot. This paper tries to look into kinematic and kinetic aspects of soft golf swings compared to regular golf swing and find the advantages of lighter Soft Golf clubs. For this purpose, swing motions of older aged participants were captured and kinematic analysis was performed for various kinematic parameters such as club head velocity, joint angular velocity, and joint range of motions as a pilot study. Kinetic analysis was performed by applying kinematic data to computer simulation models constructed from anthropometric database and the measurements from the participants. The simulations were solved using multi-body dynamics solver. Firstly, the kinematic parameters such as joint angles were obtained by solving inverse dynamics problem based on motion tracking data. Secondly, the kinetic parameters such as joint torques were obtained by solving control dynamics problem of making joint torque to follow pre-defined joint angle data. The results showed that mechanical loadings to major joints were reduced with lighter Soft Golf club.

Psychophysical cost function of joint movement for arm reach posture prediction

  • 최재호;김성환;정의승
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1994.04a
    • /
    • pp.561-568
    • /
    • 1994
  • A man model can be used as an effective tool to design ergonomically sound products and workplaces, and subsequently evaluate them properly. For a man model to be truly useful, it must be integrated with a posture prediction model which should be capable of representing the human arm reach posture in the context of equipments and workspaces. Since the human movement possesses redundant degrees of freedom, accurate representation or prediction of human movement was known to be a difficult problem. To solve this redundancy problem, a psychophysical cost function was suggested in this study which defines a cost value for each joint movement angle. The psychophysical cost function developed integrates the psychophysical discomfort of joints and the joint range availability concept which has been used for redundant arm manipulation in robotics to predict the arm reach posture. To properly predict an arm reach posture, an arm reach posture prediction model was then developed in which a posture configuration that provides the minimum total cost is chosen. The predictivity of the psychophysical cost function was compared with that of the biomechanical cost function which is based on the minimization of joint torque. Here, the human body is regarded as a two-dimensional multi-link system which consists of four links ; trunk, upper arm, lower arm and hand. Real reach postures were photographed from the subjects and were compared to the postures predicted by the model. Results showed that the postures predicted by the psychophysical cost function closely simulated human reach postures and the predictivity was more accurate than that by the biomechanical cost function.

Self-Learning Control of Cooperative Motion for Humanoid Robots

  • Hwang, Yoon-Kwon;Choi, Kook-Jin;Hong, Dae-Sun
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.6
    • /
    • pp.725-735
    • /
    • 2006
  • This paper deals with the problem of self-learning cooperative motion control for the pushing task of a humanoid robot in the sagittal plane. A model with 27 linked rigid bodies is developed to simulate the system dynamics. A simple genetic algorithm(SGA) is used to find the cooperative motion, which is to minimize the total energy consumption for the entire humanoid robot body. And the multi-layer neural network based on backpropagation(BP) is also constructed and applied to generalize parameters, which are obtained from the optimization procedure by SGA, in order to control the system.

Numerical Simulation of OOP(Out-of-Position) Problem with$5_{th}$ Percentile Female F.E Model ($5_{th}$ Percentile 성인 여성 유한요소 모델을 이용한 OOP(Out-of-Position) 문제에 대한 수치해석)

  • 나상진;최형연;이진희
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.177-183
    • /
    • 2004
  • The out-of-positioned small female drivers are most likely to be injured during airbag deployment due to their stature and proximity to the steering wheel and airbag module. In order to investigate the injury mechanisms, some experimental studies with Hybrid III 5% female dummy and with female cadavers could be found from the open literatures. However, the given information from those experimental studies is quite limited to the standard conditions and might not be enough to estimate the airbag inflation aggressiveness regarding on the occupant responses and injury. In this study, a finite element analysis has been performed in order to investigate the airbag-induced injuries. A finite element 5% female human model in anatomical details has been developed. The validation results of the model are also introduced in this paper.

Relative Measurement of Differential Electrode Impedance for Contact Monitoring in a Biopotential Amplifier

  • Yoo, Sun-K.
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.5
    • /
    • pp.601-605
    • /
    • 2007
  • In this paper, we propose a simple and relative electrode contact monitoring method. By exploiting the power line interference, which is regarded as one of the worst noise sources for bio-potential measurement, the relative difference in electrode impedance can be measured without a current or voltage source. Substantial benefits, including no extra circuit components, no degradation of the body potential driving circuit, and no electrical safety problem, can be achieved using this method. Furthermore, this method can be applied to multi-channel isolated bio-potential measurement systems and home health care devices under a steady measuring environment.

Contact Modeling of Arbitrary Shaped Bodies in Space (공간상에서 자유 곡면 물체의 접촉 모델링)

  • Park, Su-Jin;Shin, Ki-Bong;Sohn, Jeong-Hyun;Yoo, Wan-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.4
    • /
    • pp.544-550
    • /
    • 2003
  • The contact analyses of arbitrary shaped spatial bodies are important in the study of multi-body dynamics. This paper presents a method fur calculating contact force between bodies in space. At each integration time step, the proposed method finds potential contact points on bodies and then calculates the penetration, the velocity of penetration, and the contact force. A continuous analysis method is adopted to calculate the contact force. To get contact points accurately on their outlines, a new algorithm is developed. The proposed algorithm is tested and compared the results of DADS. As applications, the contact of two steel balls, spatial pendulums, and the problem of a ball and bat are demonstrated.

Optimization of Sheet Metal Forming Process by using Decision-Making Theory (의사결정이론을 이용한 박판성형공정의 최적화)

  • Kim, Kyung-Mo;Yin, Jeong-Je
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.2
    • /
    • pp.125-136
    • /
    • 2012
  • Wrinkle and fracture are two major defects frequently found in the sheet metal forming process. In this process there are more than one design attributes to optimize and several uncontrollable factors which cannot be ignored in determining the optimal values of design variables. Therefore, attempts to reduce defects through a traditional optimization technique are often led to failures. In this research, a new design method for reducing the wrinkle and fracture under uncontrollable factors is presented by using decision-making theory. To avoid the psychological difficulties in determining the scaling constants of the multi-attribute utility function by using the ordinary lottery questions, a pair-wise comparison procedure is adapted to avoid this problem. The effectiveness of the proposed method is illustrated through a robust design of sheet metal forming process of a side member of an automotive body.

Development of a Multibody Dynamics Program Using the Object-Oriented Modeling

  • Han, Hyung-Suk
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.6
    • /
    • pp.61-70
    • /
    • 2003
  • A multibody system dynamics analysis program is presented using one of the most useful programming methodologies, the object-oriented modeling, The object-oriented modeling defines a problem from the physical world as an abstract object. The object becomes encapsulated with the data and method, Analysis is performed using the object's interface, It is then possible for the user and the developer to modify and upgrade the program without having particular knowledge of the analysis program, The method presented in this paper has several advantages, Since the mechanical components of the multi-body system are converted into the class, the modification, exchange, distribution and reuse of classes are increased. It becomes easier to employ a new analysis method and interface with other S/W and H/W systems, Information can be communicated to each object through messaging. This makes the modeling of new classes easier using the inheritance, When developing a S/W for the computer simulation of a physical system, it is reasonable to use object-oriented modeling.

Relative Measurement of Differential Electrode Impedance for Home Healthcare Device (Home Healthcare 장치를 위한 차동 전극 임피던스의 상대적인 측정)

  • Woo, Y.J.;Yoo, S.K.
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.469-470
    • /
    • 2007
  • In this paper, we propose a simple and relative electrode contact monitoring method. By exploiting the power line interference, which is regarded as one of the worst noise sources for bio-potential measurement, the relative difference in electrode impedance can be measured without a current or voltage source. Substantial benefits, including no extra circuit components, no degradation of the body potential driving circuit, and no electrical safety problem, can be achieved using this method. Furthermore, this method can be applied to multi-channel isolated bio-potential measurement systems and home health care devices under a steady measuring environment.

  • PDF

The submerged flexible membrane breakwaters in oblique seas

  • S.T.Kee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2001.05b
    • /
    • pp.1133-1138
    • /
    • 2001
  • The focus of this paper is on the numerical investigation of obliquely incident wane interactions with a system composed of full submerged and floating dual buoy/vertical-flexible-membrane breakwaters placed in parallel with spacing. The fully submerged systems allow surface and bottom clearances to enable wave transmission over and under the system. The problem is formulated based on the two-dimensional multi-domain hydro-elastic linear wave-body interaction theory. The hydrodynamic interaction of oblique incident waves with the combination of the rigid and flexible bodies was solved by the distribution of the simple sources (modified Bessel function of fille second kind) tat satisfy the Helmholz governing equation. Using this computer program, the performance of various dual systems varying buoy radiuses and drafts, membrane lengths, clearances. spacing, mooring-lines stiffness, mooring types, water depth, and wave characteristics is thoroughly examined. It is found that the fully submerged and floating dual buoy/membrane breakwaters call, if it is properly tuned to the coming waves, have good performances ill reflecting the obliquely incident waves over a tilde range of wave frequency and headings.

  • PDF