• Title/Summary/Keyword: multi-barrier

Search Result 223, Processing Time 0.028 seconds

Simulation of Unsaturated Fluid Flow on the 2nd Phase Facility at the Wolsong LILW Disposal Center (경주 중저준위방폐장 2단계 처분시설의 불포화 환경하에서 침투수 유동 해석)

  • Ha, Jaechul;Lee, Jeonghwan;Yoon, Jeonghyoun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.3
    • /
    • pp.219-230
    • /
    • 2017
  • This study was conducted to predict and evaluate the uncertainty of safety after closure of the second phase surface disposal facility of the Gyeongju intermediate and low level repository in Korea. In this study, four scenarios are developed considering both intact and degraded states of multi-layered covers and disposal containers; also, the fluid flow by a rainfall into the disposal facility is simulated. The rainfall conditions are implemented based on the monthly average data of the past 30 years (1985~2014); the simulation period is 300 years, the management period regulated by institutional provisions. As a result of the evaluation of the basic scenario, in which the integrity of both of the containers and the covers is maintained, it was confirmed that penetration of rainfall does not completely saturate the inside of the disposal facility. It is revealed that the multiple cover layers and concrete containers effectively play the role of barrier against the permeation of rainfall.

System Reliability Analysis of Slope Considering Multiple Failure Modes (다중 파괴모드를 고려한 사면의 시스템 신뢰도해석)

  • Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.9
    • /
    • pp.71-80
    • /
    • 2013
  • This work studies the reliability analysis of a slope that considers multiple failure modes. The analysis consists of two parts. First, significant failure modes that contribute most to system reliability are determined. The so-called barrier method proposed by Der Kiureghian and Dakessian to identify significant failure modes successively is employed. Second, the failure probability for the slope is estimated on the basis of the identified significant failure modes and corresponding design points. For reliability problems entailing multiple design points, failure probability can be estimated by the multi-point first-order reliability method (FORM), Ditlevsen's bounds method, and Monte Carlo simulation. In this paper, a comparative study between these methods has been made through example problems. Analysis results showed that while a soil slope may have a large number of potential slip surfaces, its system failure probability is usually governed by a few significant slip surfaces. Therefore, the most important step in the system reliability analysis for a soil slope is to identify all the significant failure modes in an efficient way.

Effect of Surface Modification of the Porous Stainless Steel Support on Hydrogen Perm-selectivity of the Pd-Ag Alloy Hydrogen Separation Membranes (다공성 스테인리스 강 지지체의 표면개질에 따른 팔라듐-은 합금 수소 분리막의 수소 투과 선택도의 변화)

  • Kim, Nak-Cheon;Kim, Se-Hong;Lee, Jin-Beum;Kim, Hyun-Hee;Yang, Ji-Hye;Kim, Dong-Won
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.3
    • /
    • pp.286-300
    • /
    • 2016
  • Pd-Ag alloy membranes have attracted a great deal of attention for their use in hydrogen purification and separation due to their high theoretical permeability, infinite selectivity and chemical compatibility with hydro-carbon containing gas streams. For commercial application, Pd-based membranes for hydrogen purification and separation need not only a high perm-selectivity but also a stable long-term durability. However, it has been difficult to fabricate thin, dense Pd-Ag alloy membranes on a porous stainless steel metal support with surface pores free and a stable diffusion barrier for preventing metallic diffusion from the porous stainless steel support. In this study, thin Pd-Ag alloy membranes were prepared by advanced Pd/Ag/Pd/Ag/Pd multi-layer sputter deposition on the modified porous stainless steel support using rough polishing/$ZrO_2$ powder filling and micro-polishing surface treatment, and following Ag up-filling heat treatment. Because the modified Pd-Ag alloy membranes using rough polishing/$ZrO_2$ powder filling method demonstrate high hydrogen permeability as well as diffusion barrier efficiency, it leads to the performance improvement in hydrogen perm-selectivity. Our membranes, therefore, are expected to be applicable to industrial fields for hydrogen purification and separation owing to enhanced functionality, durability and metal support/Pd alloy film integration.

Advanced Permeation Properties of Solvent-free Multi-Layer Encapsulation of thin films on Ethylene Terephthalate(PET)

  • Han, Jin-Woo;Kang, Hee-Jin;Kim, Jong-Yeon;Kim, Jong-Hwan;Han, Jung-Min;Moon, Hyun-Chan;Park, Kwang-Bum;Kim, Hwi-Woon;Seo, Dae-Shik
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.973-976
    • /
    • 2006
  • In this paper, the inorganic multi-layer encapsulation of thin film was newly adopted to protect the organic layer from moisture and oxygen. Using the electron beam, Sputter, inorganic multi-layer thin-film encapsulation was deposited onto the Ethylene Terephthalate(PET) and their interface properties between inorganic and organic layer were investigated. In this investigation, the SiON $SiO_2$ and parylene layer showed the most suitable properties. Under these conditions, the water vapor transmission rate (WVTR) for PET can be reduced from level of $0.57g/m^2/day$ (bare substrate) to $1^{\ast}10^{-5}g/m^2/day$ after application of a SiON and $SiO_2$ layer. These results indicate that the $PET/SiO_2/SiON/Parylene$ barrier coatings have high potential for flexible organic light-emitting diode(OLED) applications.

  • PDF

Coupled 3D thermal-hydraulic code development for performance assessment of spent nuclear fuel disposal system

  • Samuel Park;Nakkyu Chae;Pilhyeon Ju;Seungjin Seo;Richard I. Foster;Sungyeol Choi
    • Nuclear Engineering and Technology
    • /
    • v.56 no.9
    • /
    • pp.3950-3960
    • /
    • 2024
  • As a solution to the problem of spent nuclear fuels (SNFs), the disposal of SNF has gained attention from nations using nuclear energy because of hazards posed to the ecosystem. Among many proposed solutions, the most promising method is to dispose of SNF in a deep geological repository (DGR) which utilizes the multi-barrier concept developed by Finland and Sweden. Here, a new fully-coupled Thermal-Hydraulic (TH) code HADES (High-level rAdionuclide Disposal Evaluation Simulator) is developed using the MOOSE framework. This new code suggests basic numerical tools, such as a non-linear solver and finite element discretization, to assess the safety performance of disposal systems. The new TH code considered various TH behavior using Richards' flow approach, assuming gas pressure is constant. The HADES showed promising results when it was compared to various TH codes validated from DECOVAELX-THMC projects. When the single-canister model was utilized to estimate the TH behavior of the Korean Reference disposal System, although it showed significant saturation reduction due to the evaporation of water, the temperature was maintained under the thermal criteria limit, which is 100 ℃. In addition, the new code estimated temperature and degree of saturation of the multi-canisters model, considering two or three canisters, it showed a slightly lower temperature, 5 ℃, than the single-canister model. From these results, the following are concluded: (1) the new TH code contribute to an additional integrity by estimating TH behavior of KRS; (2) however, due to limitations in single-canister simulation, it is recommended to use multi-canisters simulation to estimate TH behavior accurately. Therefore, this model is anticipated not only to help licensing applications and estimation of various multi-physics phenomena and multi-canister at the disposal site.

Chinese buffer material for high-level radiawaste disposal --Basic features of GMZ-l

  • WEN Zhijian
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11b
    • /
    • pp.236-244
    • /
    • 2005
  • Radioactive wastes arising from a wide range of human activities are in many different physical and chemical forms, contaminated with varying radioactivity. Their common feature is the potential hazard associated with their radioactivity and the need to manage them in such a way as to protect the human environment. The geological disposal is regarded as the most reasonable and effective way to safely disposal high-level radioactive wastes in the world. The conceptual model of geological disposal in China is based on a multi-barrier system that combines an isolating geological environment with an engineered barrier system. The buffer is one of the main engineered barriers for HLW repository. The buffer material is expected to maintain its low water permeability, self-sealing property, radio nuclides adsorption and retardation property, thermal conductivity, chemical buffering property, overpack supporting property, stress buffering property over a long period of time. Benotite is selected as the main content of buffer material that can satisfy above. GMZ deposit is selected as the candidate supplier for Chinese buffer material of High Level Radioactive waste repository. This paper presents geological features of GMZ deposit and basic property of GMZ Na bentonite. GMZ bentonite deposit is a super large scale deposits with high content of Montmorillonite (about $75\%$) and GMZ-l, which is Na-bentonite produced from GMZ deposit is selected as reference material for Chinese buffer material study.

  • PDF

Development of an Integrated Monitoring System for the Low and Intermediate Level Radioactive Waste Near-surface Disposal Facility (방사성폐기물 표층처분시설 통합 모니터링 시스템 개발)

  • Se-Ho Choi;HyunGoo Kang;MiJin Kwon;Jae-Chul Ha
    • Journal of Radiation Industry
    • /
    • v.17 no.4
    • /
    • pp.359-367
    • /
    • 2023
  • In this study, the function and purpose of the disposal cover, which is an engineering barrier installed to isolate the disposal vault of the near-surface disposal facility for radioactive waste from natural/man-made intrusion, and the design details of the demonstration facility for performance verification were described. The Demonstration facility was designed in a partially divided form to secure the efficiency of measurement while being the same as the actual size of the surface disposal facility to be built in the Intermediate & low-level radioactive waste disposal site of the Korea Radioactive Waste Agency (KORAD). The instruments used for measurement consist of a multi-point thermometer, FDR (Frequency Domain Reflectometry) sensor, inclinometer, acoustic sensor, flow meter, and meteorological observer. It is used as input data for the monitoring system. The 3D monitoring system was composed of 5 layers using the e-government standard framework, and was developed based on 4 components: screen, control module, service module, and DBIO(DataBase Input Output) module, and connected them to system operation. The monitoring system can provide real-time information on physical changes in the demonstration facility through the collection, analysis, storage, and visualization processes.

A Study on the Barrier-Free Space through IPA Method for the Elderly in Multi-family Housing (IPA 분석기법을 통한 공동주택의 무장애공간 인증기준 적합성 분석연구)

  • Kim, Ju-Whan;Kim, Won-Pil
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.1
    • /
    • pp.187-194
    • /
    • 2020
  • When a human being grew older, followed by visually and perceptually impaired, and dementia, it jeopardizes safety and life unless supportive design is secured for a living environment. This supportive space is based on universal design concept which offers safe-oriented, and simple use by incorporating gender and physical/mental limitation. The study of purppose was to examine the appropriateness of barrier-free standard for seniors' living in apartment through IPA. Chi-square analysis found that satisfaction with BF space is lowered as aging is continued and for female group. Regression analysis indicated that sink was the prime predictor in satisfaction, and stair/elevator was the most important variable. IPA concluded that sink, bath, shower/locker and alert/egress were prime BF indexes to be improved among 14 elements, implying careful design in sanitation area for seniors.

Adhesion Performance of Electromagnetic Induction Heating Pixture for the Integration with a Waterproof & Root Barrier Sheet and a Roof Green Unit System (방수·방근시트와 옥상녹화 박스유닛 시스템의 일체화를 위한 전자기 유도가열 융착 고정구의 부착성능)

  • Oh, Chang-Won
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.5
    • /
    • pp.463-469
    • /
    • 2018
  • A currently used roof green system with multi layers has a low constructability. Therefore a new integrated waterproof & root barrier sheet and roof green box unit system was developed using steel plate fixture and cone type fixture by electromagnetic induction heating method. This study was proceeded to evaluate adhesion performance of two types of fixtures on Engineering PE, TPO, PVC sheet in a normal condition, repeated heating and cooling condition. As a result, adhesion load on Engineering PE sheet showed the highest value. The adhesion loads of steel plate fixture showed higher value as heating temperature was getting higher. However adhesion loads of cone type fixture showed opposite tendency. Regarding to the test conditions, test results of normal condition, repeated heating and cooling condition showed same value. The cone type fixture using butyl tape showed 7 times lower adhesion load than that of cone type fixture using electromagnetic heating and 28% lower adhesion load in a repeated heating and cooling condition than a usual condition.

Evaluation of the Degradation of a 1300℃-class Gas Turbine Blade by a Coating Analysis (1300℃급 가스터빈 1단 블레이드의 코팅분석을 이용한 열화평가)

  • Song, Tae Hoon;Chang, Sung Yong;Kim, Beom Soo;Chang, Jung Chel
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.10
    • /
    • pp.901-906
    • /
    • 2010
  • The first stage blade of a gas turbine was operated under a severe environment which included both $1300^{\circ}C$ hot gas and thermal stress. To obtain high efficiency, a thermal barrier coating (TBC) and an internal cooling system were used to increase the firing temperature. The TBC consists of multi-layer coatings of a ceramic outer layer (top coating) and a metallic inner layer (bond coat) between the ceramic and the substrate. The top and bond coating layer respectively act as a thermal barrier against hot gas and a buffer against the thermal stress caused by the difference in the thermal expansion coefficient between the ceramic and the substrate. Particularly, the bondcoating layer improves the resistance against oxidation and corrosion. An inter-diffusion layer is generated between the bond coat and the substrate due to the exposure at a high temperature and the diffusion phenomenon. A thickness measurement result showed that the bond coat of the suction side was thicker than that of the pressure side. The thickest inter-diffusion zone was noted at SS1 (Suction Side point 1). A chemical composition analysis of the bond coat showed aluminum depletion around the inter-diffusion layer. In this study, we evaluated the properties of the bond coat and the degradation of the coating layer used on a $1300^{\circ}C$-class gas turbine blade. Moreover, the operation temperature of the blade was estimated using the Arrhenius equation and this was compared with the result of a thermal analysis.