• Title/Summary/Keyword: multi-angular

Search Result 189, Processing Time 0.031 seconds

Biomechanical and Physiological Comparative Analysis of the Single-Radius Knee Arthroplasty Systems and Multi-Radius Knee Arthroplasty Systems (무릎인공관절 단축범위(Single-Radius) 수술자와 다축범위(Multi-Radius) 수술자의 운동역 학적 및 운동생리학적 비교분석)

  • Jin, Young-Wan;Kwak, Yi-Sub
    • Journal of Life Science
    • /
    • v.18 no.11
    • /
    • pp.1532-1537
    • /
    • 2008
  • The purpose of this study was to investigate the effect of different arthroplasty designs on knee kinematic and lower limb muscular activation for up-stair and down-stair movement. 3-D video analysis of whole body and joint kinematics and EMG analysis of quadriceps and hamstrings were conducted. One-way ANOVAs were used for statistical analyses (p=0.05). The single-radius group exhibited more arthroplasty limb quadriceps EMG and hamstring coactivation EMG than the multi-radius group. Single-radius demonstrated more abduction angular displacement and reached peak abduction earlier than the multi-radius arthroplasty limb. The single- radius the percent body fat showed similar values in the Elderly, Single and Multi-radius group among the periods, however Control group was Lowered among the periods. Single-radius group limb also increased the quadriceps muscle activation level to produce more knee extension moment to compensate for the short quadriceps moment arm. Resting metabolic rate was significantly increased in control group in the period of LI. Energy expenditure was extremely increased in all groups except control group among the periods. We can say this is the exercise effects.

Development of Inductively Coupled Plasma Gas Ion Source for Focused Ion Beam (유도결합형 플라즈마 소스를 이용한 집속 이온빔용 가스 이온원 개발)

  • Lee, Seung-Hun;Kim, Do-Geun;Kang, Jae-Wook;Kim, Tae-Gon;Min, Byung-Kwon;Kim, Jong-Kuk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.1
    • /
    • pp.19-23
    • /
    • 2011
  • Recently, focused ion beam (FIB) applications have been investigated for the modification of VLSI circuit, the MEMS processing, and the localized ion doping, A multi aperture FIB system has been introduced as the demands of FIB applications for high speed and large area processing increase. A liquid metal ion source has problems, a large angular divergence and a metal contamination into a substrate. In this study, a gas ion source was introduced to replace a liquid metal ion source. The gas ion source generated inductively coupled plasma (ICP) in a quartz tube (diameter: 45 mm). Ar gas fed into the quartz was ionized by a 2 turned radio frequency antenna. The Ar ions were extracted by 2 extraction grids. The maximum extraction voltage was 10 kV. A numerical simulation was used to optimize the design of extraction grids and to predict an ion trajectory. As a result, the maximum ion current density was 38 $mA/cm^2$ and the spread of ion energy was 1.6 % for the extraction voltage.

On the Lift Enhancement Technique of the Trailing Edge Rotor of Two Dimensional Hydrofoil (날개 끝 회전자를 이용한 양력강화기법에 관한 연구)

  • Oh, Jung-Keun;Noh, Jackyou
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.2
    • /
    • pp.200-206
    • /
    • 2015
  • In order to verify the lift enhancement of the 2D hydrofoil with trailing edge rotor and check the ability of its practical use, experimental studies were conducted in the caviation tunnel using the test model with NACA0020 section. The three-component forces acting on the model could be measured by exclusively designed sting type multi-component load cell. The trailing edge of the model has been replaced with rotor which could be controlled by DC servo motor installed at the exterior of the tunnel. A typical effect of the trailing edge rotor has been introduced among the systematic experiments on various angular deviation of the model and the rotational velocity of the trailing edge rotor. It is appeared that the circulation control effect could be easily adjusted by selecting the rotational velocity of the trailing edge rotor and the lift force was augmented more than two times. Thus the proposed lifting device could be utilized as a novel high lifting device which has adjustability of lift force.

Forced Oscillation Wind Tunnel Test of a 50m Length Airship (50M급 비행선의 강제진동 풍동시험)

  • Chang,Byeong-Hee;Lee,Yung-Gyo;Ok,Ho-Nam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.6
    • /
    • pp.17-22
    • /
    • 2003
  • An airship is statically unstable, because it has no wing, relatively small tails and a large hull. Hence, an accurate prediction of dynamic stability is critical. In this study, dynamic stability data of the 50m Length Airship were acquired through forced oscillation wind tunnel tests. The tests were done in Birhle Applied Research Inc's Lange Amplitude Multi-Purpose(BAR LAMP) Facility located in Germany. The tests were composed with 16 static runs and 26 dynamic runs. As results, it is obtained that dynamic characteristics of the airship depend on the sideslip angle, the angular rate and its direction as well as the angle of attack. Generally, three directional moments have damping, but the normal force, the side force, and the cross-derivatives are unstable. The dynamic derivatives are not sensitive to the control surfaces, but nonlinear to the sideslip angle.

Occurrence and Morphological Characteristics of the Peperite in Mt. Juwang, Cheongsong (청송 주왕산 페퍼라이트의 산출상태 및 형태학적 특징)

  • Woo, Hyeon Dong;Jang, Yun Deuk
    • Economic and Environmental Geology
    • /
    • v.47 no.2
    • /
    • pp.97-105
    • /
    • 2014
  • Peperite exposed along the Dajeonsa basalt in Mt.Juwang, Cheongsong emerged as a consequence of the simultaneity of volcano-sedimentary sequences. This study aims to classify peperites as morphological characteristics and infer the formation process by the field investigation, image analysis, X-Ray Diffractometer and polarization microscope for the magma-sediment interaction mechanism and paleoenvironment. As a result of the field investigation globular(fluidal) peperite is the representative feature at the bottom of Dajeonsa basalt, sub-angular peperite at the middle and irregular peperite at the top. Peperite domains range from sheet and pod or feeder conduit. Although the study that the morphologies of peperite are controled by the sorts of sediment and lava or magma has tended to center around the peperite, the study addresses not single mechanism but the multi-stage mechanism because Mt.juwang peperite, under the same conditions, varies in shapes and sizes and also the ratio of sediments that show the most change of the peperite affects to the formation of peperite.

The Power of Simultaneous Multi-frequency Observations for mm-VLBI: Beyond Frequency Phase Transfer

  • Zhao, Guang-Yao;Algaba, Juan Carlos;Lee, Sang Sung;Jung, Taehyun;Dodson, Richard;Rioja, Maria;Byun, Do-Young;Hodgson, Jeffrey;Kang, Sincheol;Kim, Dae-Won;Kim, Jae-Young;Kim, Jeong-Sook;Kim, Soon-Wook;Kino, Motoki;Miyazaki, Atsushi;Park, Jong-Ho;Trippe, Sascha;Wajima, Kiyoaki
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.46.2-46.2
    • /
    • 2017
  • Atmospheric propagation effects at millimeter wavelengths can significantly alter the phases of radio signals and reduce the coherence time, putting tight constraints on high frequency Very Long Baseline Interferometry (VLBI) observations. In previous works it has been shown that non-dispersive (e.g. tropospheric) effects can be calibrated with the frequency phase transfer (FPT) technique. The coherence time can thus be significantly extended. Ionospheric effects, which can still be significant, remain however uncalibrated after FPT, as well as the instrumental effects. In this work, we implement a further phase transfer between two FPT residuals (i.e. so-called FPT2) to calibrate the ionospheric effects based on their frequency dependence. We show that after FPT2, the coherence time at 3 mm can be further extended beyond 8 hours, and the residual phase errors can be sufficiently canceled by applying the calibration of another source, which can have a large angular separation from the target (> $20{\circ}$). Calibrations for all-sky distributed sources with a few calibrators are also possible after FPT2. One of the strengths and uniqueness of this calibration strategy is the suitability for high frequency all-sky survey observations including very weak sources. We discuss the introduction of a pulse calibration system in the future to calibrate the remaining instrumental effects and allowing the possibility of imaging the source structure at high frequencies with FPT2, where all phases are fully calibrated without involving any sources other than the target itself.

  • PDF

Unbiased spectroscopic study of the Cygnus Loop with LAMOST

  • Seok, Ji Yeon;Koo, Bon-Chul;Zhao, Gang
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.44.1-44.1
    • /
    • 2018
  • We present a spectroscopic study of the Galactic supernova remnant (SNR) Cygnus Loop using the fifth Data Release (DR5) of LAMOST. The LAMOST (Large Sky Area Multi-Object Fiber Spectroscopic Telescope) features both a large field-of-view (about 20 deg2) and a large aperture (~4 m in diameter), which allow us to obtain 4000 spectra simultaneously. Its wavelength coverage ranges from ${\sim}3700{\AA}$ to $9000{\AA}$ with a spectral resolution of $R{\approx}1800$. The Cygnus Loop is a prototype of middle-aged SNRs, which has advantages of being bright, large in angular size (${\sim}3.8^{\circ}{\times}3^{\circ}$), and relatively unobscured by dust. Along the line of sight of the Cygnus Loop, 2747 LAMOST DR5 spectra are found in total, which are spatially distributed over the entire remnant. Among them, 778 spectra are selected based on the presence of emission lines (i.e., [O III]${\lambda}5007$, Ha, and [S II]${\lambda}{\lambda}$ 6717, 6731) for further visual inspection. About half of them (336 spectra) show clear spectral features to confirm their association with the remnant, 370 spectra show stellar features only, and 72 spectra are ambiguous and need further investigation. For those associated with the remnant, we identify emission lines and measure their intensities. Spectral properties considerably vary within the remnant, and we compare them with theoretical models to derive physical properties of the SNR such as electron density and temperature, and shock velocity. While some line ratios are in good agreement with model prediction, others cannot be explained by simple shock models with a range of shock velocities. We discuss these discrepancies between model predictions and the observations and finally highlight the powerfulness of the LAMOST data to investigate spatial variations of physical properties of the Cygnus Loop.

  • PDF

Process Parameter Effect on Deformation of a V-groove Thin Plate for FCAW and EGW (V-groove 박판의 FCAW와 EGW 공정에 따른 변형에 미치는 공정인자 영향)

  • Han, Juho;Jeon, Jaeseung;Park, Chulsung;Oh, Chongin;Yun, Jinoh;Lee, Jeongsoo
    • Journal of Welding and Joining
    • /
    • v.31 no.1
    • /
    • pp.65-70
    • /
    • 2013
  • Finite element analysis and welding experiments were performed to evaluate deformation aspect for Flux Cored Arc Welding(FCAW) and Electro Gas Welding(EGW). Numerical researches of FCAW and EGW were performed considering the difference of number of welding pass and welding direction to arc flow. To perform the numerical study of FCAW and EGW, number of welding pass and welding direction to arc flow were considered in the finite element model. FCAW process requires multi pass and its welding direction is vertical to welding torch. On the other hand, EGW process requires single pass and its welding direction is parallel to welding torch. The difference of welding direction and heat input was considered in the finite element analysis. In FCAW process, Goldak's double ellipsoidal heat input model was adopted. In the EGW process, Hemi-spherical power density distribution was adopted. In the results of experiment and finite element analysis, angular deformation of FCAW process is larger than that of EGW process.

Molecular gas and star formation in early-type galaxies

  • Bureau, Martin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.65-65
    • /
    • 2011
  • Early-type galaxies represent the end point of galaxy evolution and, despite pervasive residual star formation, are generally considered "red and dead", that is composed exclusively of old stars with no star formation. Here, their molecular gas content is constrained and discussed in relation to their evolution, supporting the continuing importance of minor mergers and/or cold gas accretion. First, as part of the Atlas3D survey, the first complete, large, volume-limited survey of CO in normal early-type galaxies is presented. At least of 23% of local early-types possess a substantial amount of molecular gas, the necessary ingredient for star formation, independent of mass and environment but dependent on the specific stellar angular momentum. Second, using CO synthesis imaging, the extent of the molecular gas is constrained and a variety of morphologies is revealed. The kinematics of the molecular gas and stars are often misaligned, implying an external gas origin in over a third of all systems, more than half in the field, while external gas accretion must be shot down in clusters. Third, many objects appear to be in the process of forming regular kpc-size decoupled disks, and a star formation sequence can be sketched by piecing together multi-wavelength information on the molecular gas, current star formation, and young stars. Fourth, early-type galaxies do not seem to systematically obey all our usual prejudices regarding star formation (e.g. Schmidt-Kennicutt law, far infrared-radio continuum correlation), suggesting a greater diversity in star formation processes than observed in disk galaxies and the possibility of "morphological quenching". Lastly, a first step toward constraining the physical properties of the molecular gas is taken, by modeling the line ratios of density- and opacity-sensitive molecules in a few objects. Taken together, these observations argue for the continuing importance of (minor) mergers and cold gas accretion in local early-types, and they provide a much greater understanding of the gas cycle in the galaxies harbouring most of the stellar mass. In the future, better dust masses and dust-to-gas mass ratios from Herschel should allow to place entirely independent constraints on the gas supply, while spatially-resolved high-density molecular gas tracers observed with ALMA will probe the interstellar medium and star formation laws locally in a regime entirely different from that normally probed in spiral galaxies.

  • PDF

Optimal Design of a Novel Knee Orthosis using a Genetic Algorism (유전자 알고리즘을 이용한 새로운 무릎 보장구의 최적 설계)

  • Pyo, Sang-Hun;Yoon, Jung-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.10
    • /
    • pp.1021-1028
    • /
    • 2011
  • The objective of this paper is to optimize the design parameters of a novel mechanism for a robotic knee orthosis. The feature of the proposed knee othosis is to drive a knee joint with independent actuation during swing and stance phases, which can allow an actuator with fast rotation to control swing motions and an actuator with high torque to control stance motions, respectively. The quadriceps device operates in five-bar links with 2-DOF motions during swing phase and is changed to six-bar links during stance phase by the contact motion to the patella device. The hamstring device operates in a slider-crank mechanism for entire gait cycle. The suggested kinematic model will allow a robotic knee orthosis to use compact and light actuators with full support during walking. However, the proposed orthosis must use additional linkages than a simple four-bar mechanism. To maximize the benefit of reducing the actuators power by using the developed kinematic design, it is necessary to minimize total weight of the device, while keeping necessary actuator performances of torques and angular velocities for support. In this paper, we use a SGA (Simple Genetic Algorithm) to minimize sum of total link lengths and motor power by reducing the weight of the novel knee orthosis. To find feasible parameters, kinematic constraints of the hamstring and quadriceps mechanisms have been applied to the algorithm. The proposed optimization scheme could reduce sum of total link lengths to half of the initial value. The proposed optimization scheme can be applied to reduce total weight of general multi-linkages while keeping necessary actuator specifications.