• Title/Summary/Keyword: multi-angular

Search Result 189, Processing Time 0.023 seconds

Rapid Calculation of CGH Using the Multiplication of Down-scaled CGH with Shifted Concave Lens Array Function

  • Lee, Chang-Joo;Lee, Seung-Yeol
    • Current Optics and Photonics
    • /
    • v.6 no.1
    • /
    • pp.51-59
    • /
    • 2022
  • Holographic display technology is one of the promising 3D display technologies. However, the large amount of computation time required to generate computer-generated holograms (CGH) is a major obstacle to the commercialization of digital hologram. In various systems such as multi-depth head-up-displays with hologram contents, it is important to transmit hologram data in real time. In this paper, we propose a rapid CGH computation method by applying an arraying of a down-scaled hologram with the multiplication of a shifted concave lens function array. Compared to conventional angular spectrum method (ASM) calculation, we achieved about 39 times faster calculation speed for 3840 × 2160 pixel CGH calculation. Through the numerical investigation and experiments, we verified the degradation of reconstructed hologram image quality made by the proposed method is not so much compared to conventional ASM.

Neural Network based Pixel to Intra Prediction Mode Decision (신경망 기반 원본영상에서 화면 내 예측 모드로 변환)

  • Kim, Yangwoo;Lee, Yung-Lyul
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.671-672
    • /
    • 2020
  • VVC(Versertile Video Codec)의 화면 내 예측은 인코더에서 영상을 적절하게 사각형 블록으로 분할하고, 블록 주변의 먼저 재구성된 참조샘플들을 이용하여 예측블록을 형성한다. 인코더는 화면 내 예측 모드에서 각 PU(Prediction Unit)에 대하여 MIP(Matrix-based weighted Intra Prediction) 적용 여부, MIP에서 matrix의 인덱스, MRL(Multi Reference Line)의 인덱스, DC/Planar/Angular 모드에 대한 최적모드를 고려하여 각 정보를 디코더로 전송하며 각 후보모드들의 압축효율을 비교하는 과정에서 높은 연산량을 요구한다. 본 논문에서는 이러한 모드 결정은 원본영상으로도 대략적인 결정이 가능하다는 전제를 가지고 NN(Nueral Netwrok)의 일종인 CNN(Convolutional Nerual Network)를 이용하여 복잡한 모드 결정 방법을 생략하는 방법을 제안한다.

  • PDF

A Heuristic Based Navigation Algorithm for Autonomous Guided Vehicle (경험적 방법에 기초한 무인 반송차의 항법 알고리즘)

  • Cha, Y.Y.;Gweon, D.G.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.1
    • /
    • pp.58-67
    • /
    • 1995
  • A path planning algorithm using a laser range finder are presented for real-tiem navigation of an autonomous guided vehicle. Considering that the laser range finder has the excellent resolution with respect to angular and distance measurements, a sophisticated local path planning algorithm is achieved by using the human's heuristic method. In the case of which the man knows not rhe path, but the goal direction, the man forwards to the goal direction, avoids obstacle if it appears, and selects the best pathway when there are multi-passable ways between objects. These heuristic principles are applied to the path decision of autonomous guided vehicle such as forward open, side open and no way. Also, the effectiveness of the established path planning algorithm is estimated by computer simulation in complex environment.

  • PDF

Chemical and Kinematic Properties of Sagittarius Stellar Streams

  • Kang, Gwibong;Lee, Young Sun;Kim, Young Kwang
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.67.1-67.1
    • /
    • 2021
  • We use Sloan Digital Sky Survey, Large Sky Area Multi-Object Fibre Spectroscopic Telescope, and Apache Point Observatory Galactic Evolution Experiment data to analyze the kinematic and chemical properties of stellar members in Sagittarius(Sgr) tidal streams. Using distances, positions, proper motions, and angular momenta of stars around the Sgr streams, we gather clean sample of Sgr member stars. We find that the leading arm has different chemical, kinematic, orbital characteristics from those of the trailing arm and the remnant of Sgr. In particular, the leading arm shows relatively lower eccentricity distribution than the trailing arm, suggesting their origin may differ or they have experienced different dynamical evolution, which is in somewhat mystery.

  • PDF

Jammer Suppression by Eigen Analysis in Multi-Carrier Radar (멀티캐리어 레이더에서 고유치 해석에 의한 재머 억제)

  • Jeon, Hyeon-Mu;Shin, Seong-Kwan;Chung, Yong-Seek;Chung, Won-Zoo;Kim, Jong-Mann;Yang, Hoon-Gee
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.12
    • /
    • pp.1284-1291
    • /
    • 2014
  • For detection and parameter estimation, a multicarrier radar should discriminate a channel containing jamming signal and either leave it out or regenerate jammer suppressed target signal. To discriminate jamming channels, we use the angular spectrum of an eigenvector that embeds target echoes and jamming signals. We propose a criteria to discriminate the jammer channels and its basis through mathematical analysis. Moreover, we show some procedures to regenerate the jammer suppressed target echoes. Finally, the validity of the proposed method is demonstrated through simulation results showing improved performance in terms of direction of arrival(DOA) estimation.

Kinematic Analysis of Dynamic Stability Toward the Pelvis-spine Distortion during Running (달리기 시 체간의 골반-척추구조변형이 동적안정성에 미치는 연구)

  • Park, Gu-Tae;Yoo, Kyoung-Seok
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.4
    • /
    • pp.369-376
    • /
    • 2013
  • The purposes of this study were to assess dynamic stability toward pelvis-spine column distortion during running and to compare the typical three-dimensional angular kinematics of the trunk motion; cervical, thoracic, lumbar segment spine and the pelvis from the multi-segmental spine model between exercise group and non-exercise group. Subjects were recruited as exercise healthy women on regular basis (group A, n=10) and non-exercise idiopathic scoliosis women (group B, n=10). Data was collected by using a vicon motion capture system (MX-T40, UK). The pelvis, spine segments column and lower limbs analysiaed through the 3D kinematic angular ROM pattern. There were significant differences in the time-space variables, the rotation motion of knee joint in lower limbs and the pelvis variables; obliquity in side bending, inter/outer rotation in twisting during running leg movement. There were significant differences in the spinal column that is lower-lumbar, upper-lumbar, upper-thoracic, mid-upper thoracic, mid-lower thoracic, lower thoracic and cervical spine at inclination, lateral bending and twist rotation between group A and group B (<.05, <.01 and <.001). As a results, group B had more restrictive motion than group A in the spinal column and leg movement behaved like a 'shock absorber". And the number of asymmetry index (AI) showed that group B was much lager unbalance than group A. In conclusion, non-exercise group was known to much more influence the dynamic stability of equilibrium for bilateral balance. These finding suggested that dynamic stability aimed at increasing balance of the trunk ROM must involve methods and strategies intended to reduce left/right asymmetry and the exercise injury.

Study on Improving Stability of 6×6 Skid-Steering Vehicle by Employing Skyhook Control Method (스카이 훅 제어를 이용한 6×6 견마 차량의 주행 안정성 향상 방안 연구)

  • Jeon, Su-Hee;Lee, Jeong-Han;Yoo, Wan-Suk;Kim, Jae-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.8
    • /
    • pp.905-912
    • /
    • 2011
  • In order to protect equipment such as controllers, it is important to improve the driving stability of $6{\times}6$ skidsteering vehicles driven on rough roads. The estimation and improvement of the driving stability should be based on the vertical acceleration, roll acceleration, and pitch acceleration. These variables will be used to achieve multivariable control and increase the vehicle driving stability. In this study, to improve vehicle stability by reducing the vertical acceleration, roll angular acceleration, and pitch angular acceleration, the skyhook control method is employed to control MR(Magnetorheological) dampers equipped with the vehicle. The proposed control system is tested in multibody dynamic simulation.

First Light of the MIRIS, a Compact Wide-field Space IR Telescope

  • Han, Wonyong;Lee, Dae-Hee;Jeong, Woong-Seob;Park, Youngsik;Moon, Bongkon;Park, Sung-Joon;Pyo, Jeonghyun;Kim, Il-Joong;Park, Won-Kee;Lee, Duk-Hang;Seon, Kwang-Il;Nam, Uk-Won;Cha, Sang-Mok;Park, Kwijong;Park, Jang-Hyun;Yuk, In-Soo;Ree, Chang Hee;Jin, Ho;Yang, Sun Choel;Park, Hong-Young;Shin, Ku-Whan;Suh, Jeong-Ki;Rhee, Seung-Wu;Park, Jong-Oh;Lee, Hyung Mok;Matsumoto, Toshio
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.49.2-49.2
    • /
    • 2014
  • The MIRIS (Multi-purpose InfraRed Imaging System) is a compact IR space Telescope, which has been developed by KASI since 2008 as the main payload of Korean STSAT-3. It was launched successfully by a Dnepr Rocket at Yasny Launch site, Russia in November 2013. After the launch, the STSAT-3 successfully settled down at Sun synchronous orbit with altitude of ~ 600km. Communications were regularly made between the ground station and the MIRIS with other secondary payload. We made a series of tests of the MIRIS during the verification period and found that all functions including the passive cooling are working as expected. The MIRIS has a wide-field of view $3.67{\times}3.67$ degrees and wavelength coverage from 0.9 to 2.0 micro-meter with the angular resolution of 51.6 arcsec. The main science missions of the MIRIS are (1) mapping of the Galactic plane with Paschen-alpha line (1.88 micro-meter) for the study of warm interstellar medium and (2) the measurement of large angular fluctuations of cosmic near infrared background radiation with I (1.05 micro meter) and H (1.6 micro meter) bands to identify their origin. We present the results of MIRIS initial operation in this paper.

  • PDF

A Study on Effect Analysis and Design Optimization of Tire and ABS Logic for Vehicle Braking Performance Improvement (차량 제동성능 개선을 위한 타이어 인자 분석 및 최적설계에 대한 연구)

  • Ki, Won Yong;Lee, Gwang Woo;Heo, Seung Jin;Kang, Dae Oh;Kim, Ki Woon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.5
    • /
    • pp.581-587
    • /
    • 2016
  • Braking is a basic and an important safety feature for all vehicles, and the final braking performance of a vehicle is determined by the vehicle's ABS performance and tire performance. However, the combination of excellent ABS and tires will not always ensure good braking performance. This is due to the fact that tire performance has non-linearity and uncertainty in predicting the repeated increase and decrease of wheel slip when activating the ABS, thus increasing the uncertainty of tire performance prediction. Furthermore, existing studies predicted braking performance after using an ABS that used a wheel slip control as a controller, which was different from an actual vehicle's ABS that controlled angular acceleration, therefore causing a decrease in the prediction accuracy of the braking performance. This paper reverse-designed the ABS that controlled angular acceleration based on the information on brake pressure, etc., which were obtained from vehicle tests, and established a braking performance prediction analysis model by combining a multi-body dynamics(MBD) vehicle model and a magic formula(MF) tire model. The established analysis model was verified after comparing it with the results of the braking tests of an actual vehicle. Using this analysis model, this study analyzed the braking effect by vehicle factor, and finally designed a tire that had optimized braking performance. As a result of this study, it was possible to design the MF tire model whose braking performance improved by 9.2 %.

Hand Gesture Recognition from Kinect Sensor Data (키넥트 센서 데이터를 이용한 손 제스처 인식)

  • Cho, Sun-Young;Byun, Hye-Ran;Lee, Hee-Kyung;Cha, Ji-Hun
    • Journal of Broadcast Engineering
    • /
    • v.17 no.3
    • /
    • pp.447-458
    • /
    • 2012
  • We present a method to recognize hand gestures using skeletal joint data obtained from Microsoft's Kinect sensor. We propose a combination feature of multi-angle histograms robust to orientation variations to represent the observation sequence of skeletons. The proposed feature efficiently represents the orientation variations of gestures that can be occurred according to person or environment by combining the multiple angle histograms with various angular-quantization levels. The gesture represented as combination of multi-angle histograms and random decision forest classifier improve the recognition performance. We conduct the experiments in hand gesture dataset obtained from a kinect sensor and show that our method outperforms the other methods by comparing the recognition performance.