• Title/Summary/Keyword: multi-agent control

Search Result 193, Processing Time 0.028 seconds

Hybrid Shop Floor Control System for Computer Integrated Manufacturing (CIM)

  • Park, Kyung-Hyun;Lee, Seok-Hee
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.544-554
    • /
    • 2001
  • A shop floor can be considered as an important level to develop Computer Integrated Manufacturing system (CIMs). However, a shop floor is a dynamic environment where unexpected events continuously occur, and impose changes to the planned activities. To deal with this problem, a shop floor should adopt an appropriate control system that is responsible for the coordination and control of the manufacturing physical flow and information flow. In this paper, a hybrid control system is described with a shop floor activity methodology called Multi-Layered Task Initiation Diagram (MTD). The architecture of the control model contains three levels: i.e., he shop floor controller (SFC), the intelligent agent controller (IAC) and the equipment controller (EC). The methodology behind the development of the control system is an intelligent multi-agent paradigm that enables the shop floor control system to be an independent, an autonomous, and distributed system, and to achieve an adaptability to change of the manufacturing environment.

  • PDF

Agent-based control systemfordistributed control of AGVs (AGV의 분산제어를 위한 에이전트 기반의 제어시스템)

  • O, Seung-Jin;Jeong, Mu-Yeong
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.1117-1123
    • /
    • 2005
  • This paper deals with a new automated guided vehicle (AGV) control system for distributed control. Proposed AGV control system adapts the multi-agent technology. The system is composed of two types of controller: routing and order. The order controller is in charge of assignment of orders to AGVs. Through the bidding-based negotiation with routing controllers, the order controller assigns a new order to the proper AGV. The order controller announces order information to the routing controllers. Then the routing controllers generate a routing schedule for the order and make a bid according to the routing schedule. If the routing schedule conflicts with other AGV's one, the routing controller makes an alternative through negotiation with other routing controllers. The order controller finally evaluates bids and selects one. Each controller consists of a set of agents: negotiation agent, decision making agent and communication agent. We focus on the agent architecture and negotiation-based AGV scheduling algorithm. Proposed system is validated through an exemplary scenario.

  • PDF

A survey on cooperative fault-tolerant control for multiagent systems

  • Pu Zhang;Di Zhao;Xiangjie Kong;Jialong, Zhang;Lei Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.6
    • /
    • pp.1431-1448
    • /
    • 2024
  • Complexity science is a new stage in the development of systems science that is the frontier areas of contemporary scientific development. Complexity science takes complex systems as the research object, which has attracted widespread attention from researchers in the fields of economy, control, management, and society. In recent years, with the rapid development of science and technology and people's deepening understanding for the theory of complex systems, the systems are no longer an object with a single function, but the systems are composed of multiple individuals with autonomous capabilities through cooperative and cooperation, namely multi-agent system (MAS). Currently, MAS is one of the main models for studying such complex systems. The intelligent control is to break the traditional multi-agent fault-tolerant control (FTC) concept and produce a new type of compensation mechanism. In this paper, the applications of fault-tolerant control methods for MASs are presented, and a discussion is given about development and challenges in this field.

Q-learning for intersection traffic flow Control based on agents

  • Zhou, Xuan;Chong, Kil-To
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.94-96
    • /
    • 2009
  • In this paper, we present the Q-learning method for adaptive traffic signal control on the basis of multi-agent technology. The structure is composed of sixphase agents and one intersection agent. Wireless communication network provides the possibility of the cooperation of agents. As one kind of reinforcement learning, Q-learning is adopted as the algorithm of the control mechanism, which can acquire optical control strategies from delayed reward; furthermore, we adopt dynamic learning method instead of static method, which is more practical. Simulation result indicates that it is more effective than traditional signal system.

  • PDF

Consensus of Linear Multi-Agent Systems with an Arbitrary Network Delay (임의의 네트워크 지연을 갖는 선형 다개체시스템의 일치)

  • Lee, Sungryul
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.517-522
    • /
    • 2014
  • This paper investigates the consensus problem for linear multi-agent systems with an arbitrary network delay. The sufficient conditions for a state consensus of linear multi-agent systems are provided by using linear matrix inequalities. Moreover, it is shown that under the proposed protocol, the consensus can be achieved even in the presence of an arbitrarily large network delay. Finally, an illustrative example is given in order to show the effectiveness of our design method.

Evoluationary Design of a Fuzzy Logic Controller For Multi-Agent Robotic Systems

  • Jeong, ll-Kwon1;Lee, Ju-Jang
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.1 no.2
    • /
    • pp.147-152
    • /
    • 1999
  • It is an interesting area in the field of artifical intelligence to find an analytic model of cooperative structure for multiagent system accomplishing a given task. Usually it is difficult to design controllers for multi-agent systems without a comprehensive knowledge about the system. One of the way to overcome this limitation is to implement an evolutionary approach to design the controllers. This paper introduces the use of a genetic algorithm to discover a fuzzy logic controller with rules that govern emergent agents solving a pursuit problem in a continuous world. Simulation results indicate that, given the complexity of the problem, an evolutionary approach to find the fuzzy logic controller seems to be promising.

  • PDF

A Multi-Agent Improved Semantic Similarity Matching Algorithm Based on Ontology Tree (온톨로지 트리기반 멀티에이전트 세만틱 유사도매칭 알고리즘)

  • Gao, Qian;Cho, Young-Im
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.11
    • /
    • pp.1027-1033
    • /
    • 2012
  • Semantic-based information retrieval techniques understand the meanings of the concepts that users specify in their queries, but the traditional semantic matching methods based on the ontology tree have three weaknesses which may lead to many false matches, causing the falling precision. In order to improve the matching precision and the recall of the information retrieval, this paper proposes a multi-agent improved semantic similarity matching algorithm based on the ontology tree, which can avoid the considerable computation redundancies and mismatching during the entire matching process. The results of the experiments performed on our algorithm show improvements in precision and recall compared with the information retrieval techniques based on the traditional semantic similarity matching methods.

Neural-Network-based Consensus Tracking of Second-Order Multi-Agent Systems With Unknown Heterogeneous Nonlinearities (미지의 이종 비선형성을 갖는 2차 비선형 다개체 시스템의 신경 회로망 기반 일치 추종)

  • Choi, Yun Ho;Yoo, Sung Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.6
    • /
    • pp.477-482
    • /
    • 2016
  • This paper presents a simple approximation-based design approach for consensus tracking of heterogeneous second-order nonlinear systems under a directed network. All nonlinearities of followers are assumed to be unknown and non-identical. In the controller design procedure, graph-independent error surfaces are used and an unimplementable intermediate controller for each follower is designed at the first design step. Then, by adding and subtracting a graph-based term at the second step, the actual controller for each follower is designed by using one neural network employed to estimate a lumped and distributed nonlinearity. Therefore, the proposed local controller for each follower has a simpler structure than existing approximation-based consensus tracking controllers for multi-agent systems with unmatched nonlinearities.

PID-based Consensus and Formation Control of Second-order Multi-agent System with Heterogeneous State Information (이종 상태 정보를 고려한 이차 다개체 시스템의 PID 기반 일치 및 편대 제어)

  • Min-Jae Kang;Han-Ho Tack
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.2
    • /
    • pp.103-111
    • /
    • 2023
  • Consensus, that aims to converge the states of agents to the same states through information exchanges between agents, has been widely studied to control the multi-agent systems. In real systems, the measurement variables of each agent may be different, the loss of information across communication may occur, and the different networks for each state may need to be constructed for safety. Moreover, the input saturation and the disturbances in the system may cause instability. Therefore, this paper studies the PID(Proportional-Integral-Derivative)-based consensus control to achieve the swarm behavior of the multi-agent systems considering the heterogeneous state information, the input saturations, and the disturbances. Specifically, we consider the multiple follower agents and the single leader agent modeled by the second-order systems, and investigate the conditions to achieve the consensus based on the stability of the error system. It is confirmed that the proposed algorithm can achieve the consensus if only the connectivity of the position graph is guaranteed. Moreover, by extending the consensus algorithm, we study the formation control problem for the multi-agent systems. Finally, the validity of the proposed algorithm was verified through the simulations.

Duplex Control for Consensus of Multi-agent Systems with Input Saturations (입력포화가 존재하는 다중 에이전트 시스템의 일치를 위한 이종제어)

  • Lim, Young-Hun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.4
    • /
    • pp.284-291
    • /
    • 2021
  • In this paper, we study the consensus problem for multi-agent systems with input saturations. The goal of consensus is to achieve a swarming behavior of multi-agent systems by reaching the agreement through information exchange. This paper considers agents modeled by first-order dynamics with input saturations. In order to guarantee the global convergence of the agents, it is assumed that the agents are stable. Moreover, considering the disturbances, we propose the PI based duplex control method to achieve the consensus. The proposed P controller and I controller are composed of different information network. Then, we investigate the conditions of the information networks and the control gains of P, I controllers to achieve the consensus applying the Lyapunov stability theorem and the Lasalle's Invariance Principle. Finally, we conduct the simulations to validate the theoretical results.