• 제목/요약/키워드: multi spray type

검색결과 27건 처리시간 0.02초

발전소용 다중 스프레이형 과열저감기의 열성능 및 안정성에 관한 연구 (Studies on the heat performance and stability for multi spray type desuperheater of the power plant)

  • 조남철;이덕구;이채문
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 춘계학술발표대회 논문집
    • /
    • pp.185-190
    • /
    • 2011
  • The important use of the desuperheater(multi spray type) changes the superheated steam into the saturated steam. It is more efficient and suitable for using the process. Also, it is more convenient and stable regarding the process temperature control. In this study, transient and quasi-static analysis were done for the evaluation of structural integrity of the multi spray type desuperheater of the power plant. Computational analysis was used to calculate the thermal stress, and the vibration test was done to evaluate the structural stability. This paper is verified by analysis that water spray nozzle(${\phi}=28mm$) shows the best ability. The results show that structural stability of the desuperheater under the real operating condition was proven.

  • PDF

가변 핀틀 인젝터에서 핀틀 팁 형상에 따른 분무특성 연구 (Spray Characteristics of a Movable Pintle Injector with Pintle Tip Shape)

  • 남정수;이건웅;박선정;허환일;구자예
    • 한국항공우주학회지
    • /
    • 제47권9호
    • /
    • pp.658-664
    • /
    • 2019
  • 핀틀 인젝터를 사용하는 액체로켓개발에 있어서 분무특성인 분무각도, 액적크기, 액적의 분포정도는 중요한 요소이다. 세 종류의 다중 홀형 핀틀 팁과 연속형 핀틀 팁을 설계하여 분무실험을 수행하였다. 다중 홀형 인젝터에서 홀 개수에 따른 액적크기는 크게 차이가 없었으며, 홀 개수가 많을수록 액적이 균일하게 분포하였다. 연속형 핀틀은 다중 홀형 핀틀보다 액적의 미립화가 잘 이루어 지고 공간내로 더 고르게 분산되는 것을 확인하였다. 핀틀의 액체분사면적조절을 통한 추력제어는 다중 홀형보다는 면 접촉 닫힘(face-shutoff)이 용이한 연속형 핀틀이 적합하다. 각 핀틀 팁의 TMR에 따른 분무각을 측정하여 특정한 경향성과 그에 해당하는 경험식을 도출하였다.

습식 다층 다단 다공성 플레이트 시스템의 집진특성 (Collection Characteristics of Wet-type Multi-layered and Multi-staged Porous Plate System)

  • 여석준;김주연
    • 동력기계공학회지
    • /
    • 제18권3호
    • /
    • pp.42-50
    • /
    • 2014
  • The main object of this study is to investigate the collection characteristics of wet-type multi-layered and multi-staged porous plate system experimentally. The experiment is carried out to analyze the characteristics of pressure drop and collection efficiency for the present system with the experimental parameters such as water spray, inlet velocity, stage number and inlet particle concentration, etc. In results, for the present system of wet-type, the pressure drop represents 158 $mmH_2O$ higher 3% than that in dry-type at 5 stage and $v_{in}$=3.53 m/s. In case of 5 stage, $v_{in}$=3.53 m/s and water spray 250 ml/min, the collection efficiency of the present system becomes significantly higher as 99.7% comparing to that of the conventional wet-type scrubber. Additionally, for 5 stage and 250 ml/min, $SO_2$ removal efficiencies decrease with the increment of inlet velocity representing 75.0, 62.5, 50.0%, at $v_{in}$=2.12, 2.82, 3.53 m/s, respectively.

나노입자 첨가를 통한 우레탄수지의 캐비테이션 저항 향상 (Addition of nano particle to increase the cavitation resistance of urethane)

  • 이익수;김낙주;박대원
    • 한국응용과학기술학회지
    • /
    • 제31권4호
    • /
    • pp.679-687
    • /
    • 2014
  • 본 연구에서는 캐비테이션에 의한 부식에 강한 도료를 개발하기 위하여 고탄성의 우레탄 수지에 내마모 성능을 향상시키기 위한 첨가제로서 Multi wall과 Single wall type의 Carbon nano tube(CNT)와 Spherical과 Fiber type의 Graphite 나노 입자를 첨가하여 물성과 캐비테이션에 대한 저항성, 작업성 등을 비교 평가하였다. 나노 입자로서 Graphite에서는 캐비테이션 저항성($t_{50}$)이 Spherical type($t_{50}$ 182min)보다는 Fiber type($t_{50}$ 292min)이 높은 캐비테이션 저항성을 갖는 것으로 관찰되었다. 또한 CNT에서는 Single wall type의 캐비테이션 저항성($t_{50}$ 286min)이 Multi wall보다는 더 높은 것으로 관찰되었다. 나노 입자중에서 가격 및 캐비테이션 저항성을 감안하면 가장 최적의 나노 입자는 Fiber type의 Graphite로 관찰되었다. 도료의 작업성 평가에서 수동 작업에 의해 제작된 표면은 매끈한 표면을 가지고 있으나 Spray 작업에 의해 제작된 표면은 표면이 균일하지 않으며 Spray시 발생된 Dust가 표면에 고착된 형태로 관찰되었다.

분사압력 변화에 따른 디젤-DME연료의 다단분사 특성에 관한연구 (An Investigation on Spray Characteristics of Diesel - DME with Change of Injection Pressure)

  • 정연호;양지웅;오충환;임옥택
    • 한국분무공학회지
    • /
    • 제18권4호
    • /
    • pp.188-195
    • /
    • 2013
  • An investigation on spray characteristics of fuels which diesel and di-methyl ether (DME) with change of injection pressure used the multi-injection in constant volume combustion chamber (CVCC). Diesel was already used famous fuel which we could use. DME showed similar features with diesel like as cetane number, auto-ignition temperature. High cetane number of diesel and DME could make possible to compression ignition. DME showed different atomization from diesel due to evaporating pressures and boiling points. Experiments were carried out in CVCC equipped with Delphi solenoid 6-hole type injector and the spray characteristics of diesel and DME were tested the various pre and pilot injection. Terms of injections and a number of injections in multi-injection has been controlled. Experiments were performed in 2 types that 1500 rpm, 2000 rpm and under the condition of injection ranging from 100 bar to 500 bar. From the results of this experiment diesel showed longer spray penetration than DME. That result showed different of atomization speed DME and diesel. Result of high injection pressure condition showed similar spray characteristics diesel and DME. After this investigation, new conditions and experiments using laser light to go forward and add the fuels like as the biodiesel and diesel and DME blend.

분사각 및 분공 직경이 예혼합 압축착화 엔진 연소에 미치는 영향 (The Effect of Injection Angle and Nozzle Diameter on HCCI Combustion)

  • 국상훈;공장식;박세익;배충식;김장헌
    • 한국자동차공학회논문집
    • /
    • 제15권2호
    • /
    • pp.1-7
    • /
    • 2007
  • The effect of injector geometries including the injection angle and number of nozzle holes on homogeneous charge compression ignition (HCCI) engine combustion has been investigated in an automotive-size single-cylinder diesel engine. The HCCI engine has advantages of simultaneous reduction of PM and NOx emissions by achieving the spatially homogenous distribution of diesel fuel and air mixture, which results in no fuel-rich zones and low combustion temperature. To make homogeneous mixture in a direct-injection diesel engine, the fuel is injected at early timing. The early injection guarantees long ignition delay period resulting in long mixing period to form a homogeneous mixture. The wall-impingement of the diesel spray is a serious problem in this type of application. The impingement occurs due to the low in-cylinder density and temperature as the spray penetrates too deep into the combustion chamber. A hole-type injector (5 holes) with smaller angle ($100^{\circ}$) than the conventional one ($150^{\circ}$) was applied to resolve this problem. The multi-hole injector (14 holes) was also tested to maximize the atomization of diesel fuel. The macroscopic spray structure was visualized in a spray chamber, and the spray penetration was analyzed. Moreover, the effect of injector geometries on the power output and exhaust gases was tested in a single-cylinder diesel engine. Results showed that the small injection angle minimizes the wall-impingement of diesel fuel that results in high power output and low PM emission. The multi-hole injector could not decrease the spray penetration at low in-cylinder pressure and temperature, but still showed the advantages in atomization and premixing.

간헐적인 연료분무의 유동특성에 관한 연구 (A Study on the Flow Characteristics of an Intermittent Fuel Spray)

  • 김원태;강신재
    • 대한기계학회논문집B
    • /
    • 제21권9호
    • /
    • pp.1198-1206
    • /
    • 1997
  • The flow characteristics of an intermittent fuel injection into a stationary ambient air were investigated using gasoline. The measurements were made by two-channel, air cooling type Phase Doppler Anemometer(PDA) system (DANTEC, 750 MW). And a pintle type injector of MPI (Multi-point Port Injection) system was utilized as a fuel injector. The PDA receiver optic was set up in a 60.deg. C forward scatter arrangement to obtain the optimum scattering signal of fuel droplets. The data were obtained by synchronizing PDA system with the fuel injection period, and the axial and radial velocity and turbulent components of fuel droplets were mainly measured for the analysis of temporal and spatial distribution depending upon the fuel injection pressures.

An Overview of Liquid Spray Modeling Formed by High-Shear Nozzle/Swirler Assembly

  • Koo, Ja-Ye
    • Journal of Mechanical Science and Technology
    • /
    • 제17권5호
    • /
    • pp.726-739
    • /
    • 2003
  • A multi-dimensioanl model is being increasingly used to predict the thermo-flow field in the gas turbine combustor. This article addresses an integrated survey of modeling of the liquid spray formation and fuel distribution in gas turbine with high-shear nozzle/swirler assembly. The processes of concern include breakup of a liquid jet injected through a hole type orifice into air stream, spray-wall interaction and spray-film interaction, breakup of liquid sheet into ligaments and droplet,5, and secondary droplet breakup. Atomization of liquid through hole nozzle is described using a liquid blobs model and hybrid model of Kelvin-Helmholtz wave and Rayleigh-Taylor wave. The high-speed viscous liquid sheet atomization on the pre-filmer is modeled by a linear stability analysis. Spray-wall interaction model and liquid film model over the wall surface are also considered.

핀틀 인젝터를 사용한 젤 추진제 분무 특성 연구 (Characteristics of Gel Propellant Spray from a Pintle Injector)

  • 이건웅;송우석;황주현;황용석;구자예
    • 한국분무공학회지
    • /
    • 제24권2호
    • /
    • pp.82-88
    • /
    • 2019
  • Shear coaxial injectors were commonly used in rocket engine combustor. They showed good combustion performance. However it is not easy to control the thrust. Pintle injectors were not as popular as the coaxial injectors so far, they have a great advantage over the coaxial injectors. That is, it is relatively easy to control the thrust. Spray characteristics of gel type propellant from movable sleeve pintle injector were investigated. Water with 0.05% of Carbopol 940 was used as gel simulant instead of kerosene gel combined with Thixarol ST for academic purpose. Experiments were performed in various temperature, pressure and pintle opening condition. The results were compared with neat liquid spray. It is also verified that the capabilites of the injector by adjusting the pintle opening.

Development of Plate-type Fine Atomizing Nozzles for SI Engines with Intake-port Fuel Injection

  • Suzuki, Takashi;Tani, Yasuhide
    • 한국분무공학회지
    • /
    • 제12권1호
    • /
    • pp.45-57
    • /
    • 2007
  • This paper presents both experimental and numerical studies regarding nozzles used for the SI engine application, particularly for the intake-port fuel injection type. The atomization mechanism of the multi-hole plate nozzle was investigated experimentally. It was found that the nozzle design added turbulence into the liquid-film jet and the jet disintegrated rapidly. Based on the results, various plate types for the nozzle were developed and tested; six hole nozzle for liquid jet interaction, plate-type nozzle with flat duct channel, and the simpler structured nozzle. The spray characteristics of the prototype nozzles were examined experimentally while the internal flow of the nozzle was investigated computationally. It was shown that turbulent liquid-film was injected and atomization quality was improved by controlling the internal flow condition of the plate-type nozzle.

  • PDF