• Title/Summary/Keyword: multi sensor

Search Result 2,015, Processing Time 0.03 seconds

오일샌드 저류층 지질특성화를 위한 기초연구 소개

  • Choe, Jae-Yong;Kim, Dae-Seok;Gwon, Lee-Gyun;Jeong, Gong-Su
    • 한국지구과학회:학술대회논문집
    • /
    • 2010.04a
    • /
    • pp.106-106
    • /
    • 2010
  • 오일샌드는 비투멘(bitumen), 물, 점토, 모래의 혼합체로 이루어진 비재래형 탄화수소 자원으로 세계적인 고유가 시대에 큰 관심을 받고 있는 석유자원 중 하나이다. 오일샌드는 대부분이 캐나다 앨버타주에 분포하고 있으며 주요 저류층으로는 아스바스카(Athabasca), 콜드레이크(Cold Lake) 지역의 멕머레이층(McMurray Formation), 클리어워터층(Clearwater Formation), 그랜드래피드층(Grand Rapid Formation)과 피스리버(Peace River) 지역의 블루스카이층(Bluesky Formation), 게팅층(Gathing Formation)이 있다. 오일샌드 저류층은 고생대 탄산염 기반암 위에 하성-에스츄어리에 이르는 다양한 퇴적환경에서 형성되어 매우 복잡한 지질특성이 나타난다. 오일샌드 저류층의 효율적인 개발을 위해서는 저류층의 복잡한 지질학적 특성의 이해가 반드시 필요하다. 본 연구에서 캐나다 오일샌드 시추코어 분석 DB, 물리검층 자료, 현장 및 현생 시추코어를 통하여 오일샌드 저류층의 지질특성화 정보의 도출을 시도하였다. 우선 캐나다 앨버타 전역에 분포하는 시추공의 기본 정보(표고, 위경도, 층서별 최상부 심도, 생산광구명, 광구개발업체)를 제공하는 AccuMap DB 프로그램을 이용하여 광역적인 오일샌드 저류층의 분포 특성을 이해하고자 주요층서에 대한 고지형도 및 층후도를 생산광구별로 도면화하여 분석하였다. 또한 캐나다 ENCANA사와 국제공동연구의 일환으로 확보된 크리스티나 레이크(Christina Lake)광구의 현장 시추코어를 이용하여 코어의 상세기재, 비파괴 물성측정, 입도/비투멘 함유량 분석과 같은 다양한 실내 시추코어분석 실험을 수행 중이다. 비파괴 물성측정은 현장 시추코어의 물리적/화학적 특성을 파악하고자 MSCL(Multi sensor core logger)과 XRF 코어 스캐너(X-ray fluorescence core scaner)를 통해 이루어지며, 분석결과로 시추코어의 감마밀도(gamma density), P파 속도(P-wave velocity), 전기비저항(resistivity), 대자율(magnetic susceptibility) 및 색지수의 물성과 정량적 화학조성을 측정한다. 현장 시추코어의 일부는 유기용매를 이용하여 퇴적물 내의 비투멘을 완전히 추출하고 퇴적물 입도와 저류층 비투멘 함유량 측정에 이용되었다. 현장 시료 분석 결과들은 물리검층 자료와 대비를 통하여 저류층의 지질특성을 규명하는 연구에 이용될 예정이다. 마지막으로 오일샌드의 현생 유사 퇴적환경으로 알려진 서해 경기만 조간대에서 시추코어 퇴적물을 획득하여 상세 기재하였으며, 이를 통해 오일샌드 저류층의 퇴적 모델을 제시하고자 퇴적층서 연구를 진행 중이다. 향후 오일샌드 관련 시추코어의 분석 결과들이 종합되면 기존 보다 비투멘 회수효율을 향상시킬 수 있는 정밀한 오일샌드 저류층 지질모델을 수립할 수 있을 것으로 기대된다.

  • PDF

Determination of Biogenic Amines using an Amperometric Biosensor with a Carbon Nanotube Electrode and Enzyme Reactor (Carbon Nanotube 전극과 효소반응기로 구성된 Amperometric Biosensor를 이용한 Biogenic Amines 검출)

  • Kim, Jong-Won;Jeon, Yeon-Hee;Kim, Mee-Ra
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.20 no.5
    • /
    • pp.735-742
    • /
    • 2010
  • Biogenic amines are synthesized by microbial decarboxylation for the putrefaction or fermentation of foods containing protein. Although biogenic amines such as histamine, tyramine, and putrescine are required for many physiological functions in humans and animals, consumption of high amounts of biogenic amines can cause toxicological effects, including serious gastrointestinal, cutaneous, hemodynamic, and neurological symptoms. In this study, a novel amperometric biosensor wasdeveloped to detect biogenic amines. The biosensor consisted of a working electrode, a reference electrode, a counter electrode, an enzyme reactor with immobilized diamine oxidase, an injector, a peristaltic pump and a potentiostat. A working electrode was fabricated with a glassy carbon electrode (GCE) by coating functionalized multi-walled carbon nanotubes (MWCNT-$NH_2$) and by electrodepositing Prussian blue (PB) to enhance electrical conductivity. A sensor system with PB/MWCNT-$NH_2$/GCE showed linearity in the range of $0.5 {\mu}M{\sim}100 {\mu}M$ hydrogen peroxide with a detection limit of $0.5 {\mu}M$. The responses for tyramine, 2-phenylethylamine, and tryptamine were 95%, 75%, and 70% compared to that of histamine, respectively. These results imply that the biosensor system can be applied to the quantitative measurement of biogenic amines.

Post-annealing Effect of Giant Magnetoresistance-Spin Valve Device for Sensor (센서용 거대자기저항 스핀밸브소자의 열처리 효과)

  • Lee, Sang-Suk;Park, Sang-Hyun;Soh, Kwang-Sup;Joo, Ho-Wan;Kim, Gi-Wang;Hwang, D.G.
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.4
    • /
    • pp.172-177
    • /
    • 2007
  • In order to detect of the magnetic property in the cell unit, we studied the GMR-SV (giant magnetoresistance-spin valves) biosensor, which was depended on the micro patterned features according to two easy directions of longitudinal and transversal axes. Here, the multi layer structure was glass/NiO/NiFe/CoFe/Cu/CoFe/NiFe. The uniaxial anisotropy direction was applied to the patterned biosensor during the deposition and vacuum post-annealing at $200^{\circ}C$ under the magnitude of 300 Oe, respectively. Considering the magnetic shape anisotropy effect, the size of micro patterned biosensor was a $2{\times}5{\mu}m^2$ after the photo lithography process. By our experimental results, we confirmed that the best condition of GMR-SV biosensor should be the same direction of the axis sensing current and the easy axis of pinned NiO/NiFe/CoFe triple layer oriented to the width direction of device, and the direction of the easy axis of free CoFe/NiFe bilayer was according to the longitudinal direction of device.

Orthophoto and DEM Generation Using Low Specification UAV Images from Different Altitudes (고도가 다른 저사양 UAV 영상을 이용한 정사영상 및 DEM 제작)

  • Lee, Ki Rim;Lee, Won Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.5
    • /
    • pp.535-544
    • /
    • 2016
  • Even though existing methods for orthophoto production using expensive aircraft are effective in large areas, they are drawbacks when dealing with renew quickly according to geographic features. But, as UAV(Unmanned Aerial Vehicle) technology has advanced rapidly, and also by loading sensors such as GPS and IMU, they are evaluates that these UAV and sensor technology can substitute expensive traditional aerial photogrammetry. Orthophoto production by using UAV has advantages that spatial information of small area can be updated quickly. But in the case of existing researches, images of same altitude are used in orthophoto generation, they are drawbacks about repetition of data and renewal of data. In this study, we targeted about small slope area, and by using low-end UAV, generated orthophoto and DEM(Digital Elevation Model) through different altitudinal images. The RMSE of the check points is σh = 0.023m on a horizontal plane and σv = 0.049m on a vertical plane. This maximum value and mean RMSE are in accordance with the working rule agreement for the aerial photogrammetry of the National Geographic Information Institute(NGII) on a 1/500 scale digital map. This paper suggests that generate orthophoto of high accuracy using a different altitude images. Reducing the repetition of data through images of different altitude and provide the informations about the spatial information quickly.

Analysis of Thermal Heat Island Potential by Urbanization Using Landsat-8 Time-series Satellite Imagery (Landsat-8 시계열 위성영상을 활용한 도심지 확장에 따른 열섬포텐셜 분석)

  • Kim, Taeheon;Lee, Won Hee;Han, Youkyung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.4
    • /
    • pp.305-316
    • /
    • 2018
  • As the urbanization ratio increases, the heat environment in cities is becoming more important due to the urban heat island. In this study, the heat island spatial analysis was calculated and conducted for analysis of urban thermal environment of Sejong city, which was launched in 2012 and has been developed rapidly. To analyze the ratio and change rate of urban area, a multi temporal land cover map (2013 to 2015 and 2017) of study area is generated based on Landsat-8 OLI/TIRS (Operational Land Imager / Thermal Infrared Sensor) satellite imagery. Then, we select an TIR (Thermal Infrared) band from the two TIR bands provided by the Landsat-8, which is used for calculating the heat island potential, through the accuracy evaluation of the brightness temperature and AWS (Automatic Weathering Station) data. Based on the selected band and surface emissivity, land surface temperature is calculated and the estimated heat island potential change is analyzed. As a result, the land surface temperature of the high ratio and change rate of urban area was significantly higher than the surrounding area around $3^{\circ}C$ to $4^{\circ}C$, and the heat island potential was also higher around $4^{\circ}C$ to $5^{\circ}C$. However, the heat island phenomenon was alleviated in urban areas with high rate of change that also show high green area ratio. Therefore, we demonstrated that dense urban area increases the possibility of inducing heat island, but it can mitigate the heat island through green areas.

Understory Evapotranspiration Measured by Eddy-Covariance in Gwangneung Deciduous and Coniferous Forests (광릉 활엽수림과 침엽수림에서 에디공분산으로 관측한 하부 군락의 증발산)

  • Kang, Min-Seok;Kwon, Hyo-Jung;Lim, Jong-Hwan;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.4
    • /
    • pp.233-246
    • /
    • 2009
  • The partitioning of evapotranspiration (ET) into evaporation (E) and transpiration (T) is critical in understanding the water cycle and the couplings between the cycles of energy, water, and carbon. In forests, the total ET measured above the canopy consists of T from both overstory and understory vegetation, and E from soil and the intercepted precipitation. To quantify their relative contributions, we have measured ET from the floors of deciduous and coniferous forests in Gwangneung using eddy covariance technique from 1 June 2008 to 31 May 2009. Due to smaller eddies that contribute to turbulent transfer near the ground, we performed a spectrum analysis and found that the errors associated with sensor separation were <10%. The annual sum of the understory ET was 59 mm (16% of total ET) in the deciduous forest and 43 mm (~7%) in the coniferous forest. Overall, the understory ET was not negligible except during the summer season when the plant area index was near its maximum. In both forest canopies, the decoupling factor ($\Omega$) was about ~0.15, indicating that the understory ET was controlled mainly by vapor pressure deficit and soil moisture content. The differences in the understory ET between the two forest canopies were due to different environmental conditions within the canopies, particularly the contrasting air humidity and soil water content. The non-negligible understory ET in the Gwangneung forests suggests that the dual source or multi-level models are required for the interpretation and modeling of surface exchange of mass and energy in these forests.

Unsupervised Change Detection for Very High-spatial Resolution Satellite Imagery by Using Object-based IR-MAD Algorithm (객체 기반의 IR-MAD 기법을 활용한 고해상도 위성영상의 무감독 변화탐지)

  • Jaewan, Choi
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.4
    • /
    • pp.297-304
    • /
    • 2015
  • The change detection algorithms, based on remotely sensed satellite imagery, can be applied to various applications, such as the hazard/disaster analysis and the land monitoring. However, unchanged areas sometimes detected as the changed areas due to various errors in relief displacements and noise pixels, included in the original multi-temporal dataset at the application of unsupervised change detection algorithm. In this research, the object-based changed detection for the high-spatial resolution satellite images is applied by using the IR-MAD (Iteratively Reweighted- Multivariate Alteration Detection), which is one of those representative change detection algorithms. In additionally, we tried to increase the accuracy of change detection results with using the additional information, based on the cross-sharpening method. In the experiment, we used the KOMPSAT-2 satellite sensor, and resulted in the object-based IR-MAD algorithm, representing higher changed detection accuracy than that by the pixel-based IR-MAD. Also, the object-based IR-MAD, focused on cross-sharpened images, increased in accuracy of changed detection, compared to the original object-based IR-MAD. Through these experiments, we could conclude that the land monitoring and the change detection with the high-spatial-resolution satellite imagery can be accomplished efficiency by using the object-based IR-MAD algorithm.

A Study on Method to prevent Collisions of Multi-Drone Operation in controlled Airspace (관제 공역 다중 드론 운행 충돌 방지 방안 연구)

  • Yoo, Soonduck;Choi, Taein;Jo, Seongwon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.5
    • /
    • pp.103-111
    • /
    • 2021
  • The purpose of this study is to study a method for preventing collisions of multiple drones in controlled airspace. As a result of the study, it was proved that it is appropriate as a method to control drone collisions after setting accurate information on the ROI (Region of Interest) area estimated based on the expected drone path and time in the control system as a method to avoid drone collision. As a result of the empirical analysis, the diameter of the flight path of the operating drone should be selected to reduce the risk of collision, and the change in the departure time and operating speed of the operating drone did not act as an influencing factor in the collision. In addition, it has been demonstrated that providing flight priority is one of the appropriate methods as a countermeasure to avoid collisions. For collision avoidance methods, not only drone sensor-based collision avoidance, but also collision avoidance can be doubled by monitoring and predicting collisions in the control system and performing real-time control. This study is meaningful in that it provided an idea for a method for preventing collisions of multiple drones in controlled airspace and conducted practical tests. This helps to solve the problem of collisions that occur when multiple drones of different types are operating based on the control system. This study will contribute to the development of related industries by preventing accidents caused by drone collisions and providing a safe drone operation environment.

Study on Design of Advanced Smart Postural Change Device for Supine Posture Control (와상체위제어를 위한 스마트 고기능 자세변환기의 설계에 관한 연구)

  • Park, Seung Hwan;Jung, Jin Taek;Sim, Woo Jung;Kim, Yung Sear
    • 재활복지
    • /
    • v.18 no.4
    • /
    • pp.221-235
    • /
    • 2014
  • Recently, the frequency of stroke disease is increased due to the rapid aging population, and is contributed to the major occurrence factors of the posteriori acquired disability. This study is about an postural change device for the control of supine posture which is an assisted equipment using in daily rehabilitation process for overcoming the disability by the aftereffects of the stoke disease. In this paper, the existing domestic and Japan postural appliances is examined and its comparison and categorization is performed according to its functions and purposes. Here, in order to control the supine posture state, the design method for advanced multi functional system is proposed, which is devised to have an unified mattress control operations of combining the bedsore prevention tube with the supine posture tilting tube. And also, in addition of an smart function, it is designed to enable to perform an RF functions such as the monitoring of the present device state, the alteration of the basic position and the control of alternative floating and supine posture. This system control hardware consists of three main parts : the sensor detection part, the motor driving /control part, and the system control part for bluetooth communication. In results, we confirmed that the system designed by this research is possible to make it practical as an advanced smart postural change device combined by IoT technology in the application field of the recent IT technology.

Location Tracking and Visualization of Dynamic Objects using CCTV Images (CCTV 영상을 활용한 동적 객체의 위치 추적 및 시각화 방안)

  • Park, Sang-Jin;Cho, Kuk;Im, Junhyuck;Kim, Minchan
    • Journal of Cadastre & Land InformatiX
    • /
    • v.51 no.1
    • /
    • pp.53-65
    • /
    • 2021
  • C-ITS(Cooperative Intelligent Transport System) that pursues traffic safety and convenience uses various sensors to generate traffic information. Therefore, it is necessary to improve the sensor-related technology to increase the efficiency and reliability of the traffic information. Recently, the role of CCTV in collecting video information has become more important due to advances in AI(Artificial Intelligence) technology. In this study, we propose to identify and track dynamic objects(vehicles, people, etc.) in CCTV images, and to analyze and provide information about them in various environments. To this end, we conducted identification and tracking of dynamic objects using the Yolov4 and Deepsort algorithms, establishment of real-time multi-user support servers based on Kafka, defining transformation matrices between images and spatial coordinate systems, and map-based dynamic object visualization. In addition, a positional consistency evaluation was performed to confirm its usefulness. Through the proposed scheme, we confirmed that CCTVs can serve as important sensors to provide relevant information by analyzing road conditions in real time in terms of road infrastructure beyond a simple monitoring role.