• Title/Summary/Keyword: multi resolution analysis

Search Result 412, Processing Time 0.051 seconds

Level Selection of the Multi-Resolution Analysis(MRA) for Optimum Denoising Performance of the Discrete Wavelet Transform(DWT) (이산 웨이블릿 변환(DWT)의 디노이징 최적 성능을 위한 다해상도 분석의 레벨 선택 연구)

  • Whang, J.Y.;Kim, J.H.
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.465-466
    • /
    • 2015
  • 배터리 관리시스템(BMS;battery management system)의 중요 고려요소인 SOC(state-of-charge) 및 SOH(state-of-health)의 전기적 등가회로 모델 기반 고성능 추정의 전제 조건은 배터리 단자전압의 안정된 실험데이터 확보이다. 그러나, 예상치 않은 에러로 인해 배터리 단자전압에 노이즈 성분이 포함될 경우 SOC 및 SOH 추정알고리즘의 성능저하가 우려된다. 이를 위해, 본 논문은 이산 웨이블릿 변환(DWT;discrete wavelet transform)의 다해상도 분석(MRA;multi resolution analysis) 레벨에 따른 디노이징 최적 성능을 소개하고자 한다. 하드 임계화(hard-thresholding) 및 소프트 임계화(soft-thresholding) 기법에 따른 디노이징 성능 차이를 보이고, 각 임계화 기법 적용 시 디노이징 최적 성능을 보이는 레벨을 선택한다.

  • PDF

An Efficient Adaptive Wavelet-Collocation Method Using Lifted Interpolating Wavelets (수정된 보간 웨이블렛응 이용한 적응 웨이블렛-콜로케이션 기법)

  • Kim, Yun-Yeong;Kim, Jae-Eun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.2100-2107
    • /
    • 2000
  • The wavelet theory is relatively a new development and now acquires popularity and much interest in many areas including mathematics and engineering. This work presents an adaptive wavelet method for a numerical solution of partial differential equations in a collocation sense. Due to the multi-resolution nature of wavelets, an adaptive strategy can be easily realized it is easy to add or delete the wavelet coefficients as resolution levels progress. Typical wavelet-collocation methods use interpolating wavelets having no vanishing moment, but we propose a new wavelet-collocation method on modified interpolating wavelets having 2 vanishing moments. The use of the modified interpolating wavelets obtained by the lifting scheme requires a smaller number of wavelet coefficients as well as a smaller condition number of system matrices. The latter property makes a preconditioned conjugate gradient solver more useful for efficient analysis.

Implementation of theVerification and Analysis System for the High-Resolution Stereo Camera (고해상도 다기능 스테레오 카메라 지상 검증 및 분석 시스템 구현)

  • Shin, Sang-Youn;Ko, Hyoungho
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.3
    • /
    • pp.471-482
    • /
    • 2019
  • The mission of the high-resolution camera for the lunar exploration is to provide 3D topographic information. It enables us to find the appropriate landing site or to control accurate landing by the short distance stereo image in real-time. In this paper, the ground verification and analysis system using the multi-application stereo camera to develop the high-resolution camera for the lunar exploration are proposed. The mission test items and test plans for the mission requirement are provided and the test results are analyzed by the ground verification and analysis system. For the realistic simulation for the lunar orbiter, the target area that has similar characteristics with the real lunar surface is chosen and the aircraft flight is planned to take image of the area. The DEM is extracted from the stereo image and compose three dimensional results. The high-resolution camera mission requirements for the lunar exploration are verified and the ground data analysis system is developed.

GIS DETECTION AND ANALYSIS TECHNIQUE FOR ENVIRONMENTAL CHANGE

  • Suh, Yong-Cheol;Choi, Chul-Uong;Kim, Ji-Yong;Kim, Tae-Woo
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.163-168
    • /
    • 2008
  • KOMPSAT-3 is expected to provide data with 80-cm spatial resolution, which can be used to detect environmental change and create thematic maps such as land-use and land-cover maps. However, to analyze environmental change, change-detection technologies that use multi-resolution and high-resolution satellite images simultaneously must be developed and linked to each other. This paper describes a GIS-based strategy and methodology for revealing global and local environmental change. In the pre-processing step, we performed geometric correction using satellite, auxiliary, and training data and created a new classification system. We also describe the available technology for connecting global and local change-detection analysis.

  • PDF

Multi-Channel High Speed Data Link Design for Small SAR Satellite Image Data Transmission

  • Kwag, Young K.
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1436-1439
    • /
    • 2002
  • In this paper, based on the data link model characterized by the spaceborne small SAR system, the high rate multi-channel data link module is designed including link storage, link processor, transmitter, and wide-angle antenna. The design results are presented with the performance analysis on the data link budget as well as the multi-mode data rate in association with the SAR imaging mode of operation from high resolution to the wide swath.

  • PDF

Development of higher performance algorithm for dynamic PIV

  • NISHIO Shigeru
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.25-32
    • /
    • 2004
  • The new algorithm for higher performance of dynamic PIV has been proposed. Present study considered mathematical basis of PIV analysis for multiple-time-step images and it enables us to analyze the high time-resolution PIV, which is obtained by dynamic PIV system. Conventional single pair image PIV analysis gives us the velocity field data in each time step but it sometimes contains unnecessary information of target flow. Present technique utilize multi-time step correlation information, and it is analyzed.

  • PDF

Enhanced Multi-Frame Based Super-Resolution Algorithm by Normalizing the Information of Registration

  • Kwon, Soon-Chan;Yoo, Jisang
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.363-371
    • /
    • 2014
  • In this paper, a new super-resolution algorithm is proposed by using successive frames for generating high-resolution frames with better quality than those generated by other conventional interpolation methods. Generally, each frame used for super-resolution must only have global translation and motions of sub-pixel unit to generate good result. However, the newly proposed MSR algorithm in this paper is exempt from such constraints. The proposed algorithm consists of three main processes; motion estimation for image registration, normalization of motion vectors, and pattern analysis of edges. The experimental results show that the proposed algorithm has better performance than other conventional algorithms.

Rectangular prism pressure coherence by modified Morlet continuous wavelet transform

  • Le, Thai-Hoa;Caracoglia, Luca
    • Wind and Structures
    • /
    • v.20 no.5
    • /
    • pp.661-682
    • /
    • 2015
  • This study investigates the use of time-frequency coherence analysis for detecting and evaluating coherent "structures" of surface pressures and wind turbulence components, simultaneously on the time-frequency plane. The continuous wavelet transform-based coherence is employed in this time-frequency examination since it enables multi-resolution analysis of non-stationary signals. The wavelet coherence quantity is used to identify highly coherent "events" and the "coherent structure" of both wind turbulence components and surface pressures on rectangular prisms, which are measured experimentally. The study also examines, by proposing a "modified" complex Morlet wavelet function, the influence of the time-frequency resolution and wavelet parameters (i.e., central frequency and bandwidth) on the wavelet coherence of the surface pressures. It is found that the time-frequency resolution may significantly affect the accuracy of the time-frequency coherence; the selection of the central frequency in the modified complex Morlet wavelet is the key parameter for the time-frequency resolution analysis. Furthermore, the concepts of time-averaged wavelet coherence and wavelet coherence ridge are used to better investigate the time-frequency coherence, the coherently dominant events and the time-varying coherence distribution. Experimental data derived from physical measurements of turbulent flow and surface pressures on rectangular prisms with slenderness ratios B/D=1:1 and B/D=5:1, are analyzed.

Multi-scale Cluster Hierarchy for Non-stationary Functional Signals of Mutual Fund Returns (Mutual Fund 수익률의 비정상 함수형 시그널을 위한 다해상도 클러스터 계층구조)

  • Kim, Dae-Lyong;Jung, Uk
    • Korean Management Science Review
    • /
    • v.24 no.2
    • /
    • pp.57-72
    • /
    • 2007
  • Many Applications of scientific research have coupled with functional data signal clustering techniques to discover novel characteristics that can be used for the diagnoses of several issues. In this article we present an interpretable multi-scale cluster hierarchy framework for clustering functional data using its multi-aspect frequency information. The suggested method focuses on how to effectively select transformed features/variables in unsupervised manner so that finally reduce the data dimension and achieve the multi-purposed clustering. Specially, we apply our suggested method to mutual fund returns and make superior-performing funds group based on different aspects such as global patterns, seasonal variations, levels of noise, and their combinations. To promise our method producing a quality cluster hierarchy, we give some empirical results under the simulation study and a set of real life data. This research will contribute to financial market analysis and flexibly fit to other research fields with clustering purposes.

Classification of Land Cover on Korean Peninsula Using Multi-temporal NOAA AVHRR Imagery

  • Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.5
    • /
    • pp.381-392
    • /
    • 2003
  • Multi-temporal approaches using sequential data acquired over multiple years are essential for satisfactory discrimination between many land-cover classes whose signatures exhibit seasonal trends. At any particular time, the response of several classes may be indistinguishable. A harmonic model that can represent seasonal variability is characterized by four components: mean level, frequency, phase and amplitude. The trigonometric components of the harmonic function inherently contain temporal information about changes in land-cover characteristics. Using the estimates which are obtained from sequential images through spectral analysis, seasonal periodicity can be incorporates into multi-temporal classification. The Normalized Difference Vegetation Index (NDVI) was computed for one week composites of the Advanced Very High Resolution Radiometer (AVHRR) imagery over the Korean peninsula for 1996 ~ 2000 using a dynamic technique. Land-cover types were then classified both with the estimated harmonic components using an unsupervised classification approach based on a hierarchical clustering algorithm. The results of the classification using the harmonic components show that the new approach is potentially very effective for identifying land-cover types by the analysis of its multi-temporal behavior.