• 제목/요약/키워드: multi object tracking

검색결과 167건 처리시간 0.022초

실내 문화시설 안전을 위한 딥러닝 기반 방문객 검출 및 동선 추적에 관한 연구 (Deep Learning-based Approach for Visitor Detection and Path Tracking to Enhance Safety in Indoor Cultural Facilities)

  • 신원섭;노승민
    • Journal of Platform Technology
    • /
    • 제11권4호
    • /
    • pp.3-12
    • /
    • 2023
  • 포스트-코로나 시대에는 방역 조치의 중요성이 크게 강조되고 있으며, 이에 맞춰 딥러닝을 이용한 마스크 착용 상태 검출 및 다른 전염병 예방에 관련된 연구가 진행되고 있다. 그러나 질병 확산 방지를 위한 문화시설 관람객 탐지 및 추적 연구도 마찬가지로 중요하므로 이에 대한 연구가 진행되어야 한다. 본 논문에서는 사전 수집된 데이터 셋을 이용하여 컨볼루션 신경망 기반 객체 탐지 모델을 전이 학습시키고, 학습된 탐지 모델의 가중치를 다중 객체 추적 모델에 적용하여 방문객을 모니터링 한다. 방문객 탐지 모델은 Precision 96.3%, Recall 85.2% F1-Score 90.4%의 결과를 보여주었다. 추적 모델의 정량적 결과로 MOTA 65.6%, IDF1 68.3%. HOTA 57.2%의 결과를 보여주었으며, 본 논문의 모델과 다른 다중 객체 추적 모델 간의 정성적 비교에서 우수한 결과를 보여주었다. 본 논문의 연구는 포스트-코로나 시대의 문화시설 내 방역 시스템에 적용될 수 있을 것이다.

  • PDF

OnBoard Vision Based Object Tracking Control Stabilization Using PID Controller

  • Mariappan, Vinayagam;Lee, Minwoo;Cho, Juphil;Cha, Jaesang
    • International Journal of Advanced Culture Technology
    • /
    • 제4권4호
    • /
    • pp.81-86
    • /
    • 2016
  • In this paper, we propose a simple and effective vision-based tracking controller design for autonomous object tracking using multicopter. The multicopter based automatic tracking system usually unstable when the object moved so the tracking process can't define the object position location exactly that means when the object moves, the system can't track object suddenly along to the direction of objects movement. The system will always looking for the object from the first point or its home position. In this paper, PID control used to improve the stability of tracking system, so that the result object tracking became more stable than before, it can be seen from error of tracking. A computer vision and control strategy is applied to detect a diverse set of moving objects on Raspberry Pi based platform and Software defined PID controller design to control Yaw, Throttle, Pitch of the multicopter in real time. Finally based series of experiment results and concluded that the PID control make the tracking system become more stable in real time.

Multi-Object Tracking using the Color-Based Particle Filter in ISpace with Distributed Sensor Network

  • Jin, Tae-Seok;Hashimoto, Hideki
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제5권1호
    • /
    • pp.46-51
    • /
    • 2005
  • Intelligent Space(ISpace) is the space where many intelligent devices, such as computers and sensors, are distributed. According to the cooperation of many intelligent devices, the environment, it is very important that the system knows the location information to offer the useful services. In order to achieve these goals, we present a method for representing, tracking and human following by fusing distributed multiple vision systems in ISpace, with application to pedestrian tracking in a crowd. And the article presents the integration of color distributions into particle filtering. Particle filters provide a robust tracking framework under ambiguity conditions. We propose to track the moving objects by generating hypotheses not in the image plan but on the top-view reconstruction of the scene. Comparative results on real video sequences show the advantage of our method for multi-object tracking. Simulations are carried out to evaluate the proposed performance. Also, the method is applied to the intelligent environment and its performance is verified by the experiments.

A Self-Supervised Detector Scheduler for Efficient Tracking-by-Detection Mechanism

  • Park, Dae-Hyeon;Lee, Seong-Ho;Bae, Seung-Hwan
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권10호
    • /
    • pp.19-28
    • /
    • 2022
  • 본 논문에서는 실시간 고성능 다중 객체 추적을 수행하기 위해 최적의 TBD (Tracking-by-detection) 메커니즘을 결정할 수 있는 Detector Scheduler를 제안한다. Detector Scheduler는 서로 다른 프레임 간의 특징량 차이를 측정하는 것으로 검출기 실행 여부를 결정하여 전체 추적 속도를 향상한다. 하지만, Detector Scheduler의 학습에 필요한 GT (Ground Truth) 생성이 어렵기 때문에 Detector Scheduler를 추적 결과만을 통해 학습 가능한 자가 학습 방법을 제안한다. 제안된 자가 학습 방법은 프레임 간의 객체 카디널리티와 객체 외형 특징량의 비유사도가 커질 때 검출기를 실행할 수 있도록 의사 레이블을 생성하고 제안된 손실함수를 통해 Detector Scheduler를 학습한다.

MRF 입자필터 멀티터치 추적 및 제스처 우도 측정 (MRF Particle filter-based Multi-Touch Tracking and Gesture Likelihood Estimation)

  • 오치민;신복숙;;이칠우
    • 스마트미디어저널
    • /
    • 제4권1호
    • /
    • pp.16-24
    • /
    • 2015
  • 본 논문에서는 멀티터치 추적 및 제스처 인식을 위하여 MRF기반 입자필터와 제스처 우도 측정 방법을 제안한다. 멀티터치 추적에서 자주 발생하는 문제 중 하나는 강탈 문제이며 터치 객체 추적기가 이웃 터치 객체에게 빼앗기는 현상을 가리킨다. 강탈 문제의 원인은 입자필터의 예측 입자들이 이웃 터치 객체에 가까이 갈 경우 입자의 가중치(우도)가 낮아야 하지만 이웃 객체 영향으로 높게 계산되는 오류 때문이다. 따라서 MRF를 기반으로 이웃 객체에 가까운 입자의 가중치를 낮추는 벌점함수를 정의한다. MRF가 멀티터치를 노드로 정의하고 거리가 가까운 이웃 멀티터치들을 에지로 표현한 그래프정보이므로 이웃 멀티터치들에 대한 데이터구조로 활용되기 쉽다. 또한 MRF 그래프 정보를 바탕으로 멀티터치 제스처 분석이 가능하다. 본 논문에서는 MRF를 기반으로 다양한 제스처 우도를 정의할 수 있는 방법을 서술한다. 실험 결과에서는 제안 방법이 효과적으로 강탈 현상을 회피하고 멀티터치 제스처 우도를 정확히 측정할 수 있음을 확인할 수 있다.

차량 검출을 위한 다중객체추적 알고리즘 (Multi-Object Tracking Algorithm for Vehicle Detection)

  • 이근후;김규영;박홍민;박장식;김현태;유윤식
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2011년도 춘계학술대회
    • /
    • pp.816-819
    • /
    • 2011
  • 터널 내에서의 사고 유발 요소는 CCTV 카메라를 이용하여 검출하여 조기에 대응함으로써 차량의 정체뿐만 아니라 인적 물적 피해를 최소화하기 위하여 영상인식시스템이 도입되고 있다. 본 논문에서는 터널 내에서 여러 차량을 추적하는 알고리즘을 제안한다. 제안하는 알고리즘은 Adaboost 알고리즘을 이용하여 차량을 검출하고 검출된 차량(객체)에 대하여 템플릿 매칭 기법을 이용하여 차량을 추적한다. 컴퓨터 시뮬레이션을 통하여 제안하는 알고리즘이 여러 차량을 추적하는데 유용한 것을 확인 하였다.

  • PDF

On Addressing Network Synchronization in Object Tracking with Multi-modal Sensors

  • Jung, Sang-Kil;Lee, Jin-Seok;Hong, Sang-Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제3권4호
    • /
    • pp.344-365
    • /
    • 2009
  • The performance of a tracking system is greatly increased if multiple types of sensors are combined to achieve the objective of the tracking instead of relying on single type of sensor. To conduct the multi-modal tracking, we have previously developed a multi-modal sensor-based tracking model where acoustic sensors mainly track the objects and visual sensors compensate the tracking errors [1]. In this paper, we find a network synchronization problem appearing in the developed tracking system. The problem is caused by the different location and traffic characteristics of multi-modal sensors and non-synchronized arrival of the captured sensor data at a processing server. To effectively deliver the sensor data, we propose a time-based packet aggregation algorithm where the acoustic sensor data are aggregated based on the sampling time and sent to the server. The delivered acoustic sensor data is then compensated by visual images to correct the tracking errors and such a compensation process improves the tracking accuracy in ideal case. However, in real situations, the tracking improvement from visual compensation can be severely degraded due to the aforementioned network synchronization problem, the impact of which is analyzed by simulations in this paper. To resolve the network synchronization problem, we differentiate the service level of sensor traffic based on Weight Round Robin (WRR) scheduling at the routers. The weighting factor allocated to each queue is calculated by a proposed Delay-based Weight Allocation (DWA) algorithm. From the simulations, we show the traffic differentiation model can mitigate the non-synchronization of sensor data. Finally, we analyze expected traffic behaviors of the tracking system in terms of acoustic sampling interval and visual image size.

소형 이동 로봇의 사람 추적 성능 개선을 위한 휠 오도메트리 기반 실시간 보정에 관한 연구 (Real-Time Correction Based on wheel Odometry to Improve Pedestrian Tracking Performance in Small Mobile Robot)

  • 박재훈;안민성;한재권
    • 로봇학회논문지
    • /
    • 제17권2호
    • /
    • pp.124-132
    • /
    • 2022
  • With growth in intelligence of mobile robots, interaction with humans is emerging as a very important issue for mobile robots and the pedestrian tracking technique following the designated person is adopted in many cases in a way that interacts with humans. Among the existing multi-object tracking techniques for pedestrian tracking, Simple Online and Realtime Tracking (SORT) is suitable for small mobile robots that require real-time processing while having limited computational performance. However, SORT fails to reflect changes in object detection values caused by the movement of the mobile robot, resulting in poor tracking performance. In order to solve this performance degradation, this paper proposes a more stable pedestrian tracking algorithm by correcting object tracking errors caused by robot movement in real time using wheel odometry information of a mobile robot and dynamically managing the survival period of the tracker that tracks the object. In addition, the experimental results show that the proposed methodology using data collected from actual mobile robots maintains real-time and has improved tracking accuracy with resistance to the movement of the mobile robot.

무향 변환 기반 필터링을 이용한 전술표적 추적 성능 연구 (Study on Tactical Target Tracking Performance Using Unscented Transform-based Filtering)

  • 변재욱;정효영;이새움;김기성;김기선
    • 한국군사과학기술학회지
    • /
    • 제17권1호
    • /
    • pp.96-107
    • /
    • 2014
  • Tracking the tactical object is a fundamental affair in network-equipped modern warfare. Geodetic coordinate system based on longitude, latitude, and height is suitable to represent the location of tactical objects considering multi platform data fusion. The motion of tactical object described as a dynamic model requires an appropriate filtering to overcome the system and measurement noise in acquiring information from multiple sensors. This paper introduces the filter suitable for multi-sensor data fusion and tactical object tracking, particularly the unscented transform(UT) and its detail. The UT in Unscented Kalman Filter(UKF) uses a few samples to estimate nonlinear-propagated statistic parameters, and UT has better performance and complexity than the conventional linearization method. We show the effects of UT-based filtering via simulation considering practical tactical object tracking scenario.

수중 로봇을 위한 다중 템플릿 및 가중치 상관 계수 기반의 물체 인식 및 추종 (Multiple Templates and Weighted Correlation Coefficient-based Object Detection and Tracking for Underwater Robots)

  • 김동훈;이동화;명현;최현택
    • 로봇학회논문지
    • /
    • 제7권2호
    • /
    • pp.142-149
    • /
    • 2012
  • The camera has limitations of poor visibility in underwater environment due to the limited light source and medium noise of the environment. However, its usefulness in close range has been proved in many studies, especially for navigation. Thus, in this paper, vision-based object detection and tracking techniques using artificial objects for underwater robots have been studied. We employed template matching and mean shift algorithms for the object detection and tracking methods. Also, we propose the weighted correlation coefficient of adaptive threshold -based and color-region-aided approaches to enhance the object detection performance in various illumination conditions. The color information is incorporated into the template matched area and the features of the template are used to robustly calculate correlation coefficients. And the objects are recognized using multi-template matching approach. Finally, the water basin experiments have been conducted to demonstrate the performance of the proposed techniques using an underwater robot platform yShark made by KORDI.