• 제목/요약/키워드: multi material

검색결과 2,510건 처리시간 0.029초

Topology optimization of variable thickness Reissner-Mindlin plate using multiple in-plane bi-directional functionally graded materials

  • Nam G. Luu;Thanh T. Banh;Dongkyu Lee
    • Steel and Composite Structures
    • /
    • 제48권5호
    • /
    • pp.583-597
    • /
    • 2023
  • This paper introduces a novel approach to multi-material topology optimization (MTO) targeting in-plane bi-directional functionally graded (IBFG) non-uniform thickness Reissner-Mindlin plates, employing an alternative active phase approach. The mathematical formulation integrates a first shear deformation theory (FSDT) to address compliance minimization as the objective function. Through an alternating active-phase algorithm in conjunction with the block Gauss-Seidel method, the study transforms a multi-phase topology optimization challenge with multi-volume fraction constraints into multiple binary phase sub-problems, each with a single volume fraction constraint. The investigation focuses on IBFG materials that incorporate adequate local bulk and shear moduli to enhance the precision of material interactions. Furthermore, the well-established mixed interpolation of tensorial components 4-node elements (MITC4) is harnessed to tackle shear-locking issues inherent in thin plate models. The study meticulously presents detailed mathematical formulations for IBFG plates in the MTO framework, underscored by numerous numerical examples demonstrating the method's efficiency and reliability.

경계요소법에 의한 다결정 직교 이방성 재료의 유효 재료 상수의 계산 (Calculation of Effective Material Property for Multi-Grain Orthotropic Material by BEM)

  • 김동은;이상훈;정일중;이석순
    • 대한기계학회논문집A
    • /
    • 제32권9호
    • /
    • pp.713-719
    • /
    • 2008
  • Most of the MEMS parts are made of multi-grain silicon wafer, which is the orthotropic material and its material direction is arbitrary. The reliability of the parts must be guaranteed in order to use for the commercial usage. The need of the structural analysis of its parts emerges an important factor. The material properties of the MEMS parts are calculated by the numerical method in order to reduce a material test. In this study, the effective elastic modulus and its Poisson's ratio are calculated by the boundary element method(BEM) and are compared with the results by the finite element method(FEM).

쇼트피닝에 의한 재료의 특성에 관한 연구 (Study on the characteristics of shot peened material)

  • 이승호
    • 한국생산제조학회지
    • /
    • 제7권2호
    • /
    • pp.15-22
    • /
    • 1998
  • The effects of shot peening an the fatigue strength are studied in this paper. Applying the multistage shot peening on the material. the relation between the residual stress and fatigue strength compressive is investigated. Observing tensile strength elongation. reduction of area. hardness. and roughness. the results can be summarized as follows ; 1.The change of mechanical properties is small before and after the shot peening is carried out. The change of hardness is also small in high hardness material. 2.The surface roughness does not affect the fatigue strength. but the surface roughness is improved by multi-stage shot peening. 3.The fatigue strength of multi-stage shot peening material is 756MPa and is 1.78 times higher than that of un-peened material. 4.The maximum compressive residual strength of multi-stage shot peening material is -792MPa the fatigue strength seems to be improved by residual stress.

  • PDF

다중반사 구조를 갖는 복합구조물의 RCS 감소를 위한 광대역 다층 전파흡수체 설계 (Broad-band Multi-layered Radar Absorbing Material Design for Radar Cross Section Reduction of Complex Targets Consisting of Multiple Reflection Structures)

  • 김국현;조대승;김진형
    • 대한조선학회논문집
    • /
    • 제44권4호
    • /
    • pp.445-450
    • /
    • 2007
  • An optimum design process of the broad-band multi-layered radar absorbing material, using genetic algorithm, is established for the radar cross section reduction of a complex target, which consists of multiple reflection structures, such as surface warships. It follows the successive process of radar cross section analysis, scattering center analysis, radar absorbing material design, and reanalysis of radar cross section after applying the radar absorbing material. It is demonstrated that it is very effective even in the optimum design of the multi-layer radar absorbing material. This results from the fact that the three factors, i.e.. the incident angle range, broad-band frequencies, and maximum thickness can be simultaneously taken into account by adopting the genetic algorithm.

고에너지 물질 연소를 기반으로 한 Multi Physics Modeling (How to Prepare the Manuscript for Submission to the Proceedings of KSPE Conference)

  • 김기홍;여재익
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제28회 춘계학술대회논문집
    • /
    • pp.238-241
    • /
    • 2007
  • We present an innovative method of multi-physics application involving energetic materials. Energetic materials are related to reacting flows in extreme environments such as fires and explosions. They typically involve high pressure, hish temperature, strong non-linear shock waves, and high strain rate deformation of metals. We use an Eulerian methodology to address these problems. Our approach is naturally free from large deformation of materials that makes it suitable for high strain-rate multi-material interaction problems. Furthermore we eliminate the possible interface smearing by using the level sets. We have devised a new level set based tracking framework that can elegantly handle large gradients typically found in reacting gases and metals. We show several work-in-progress applications of our algorithm including the Taylor impact test, explosive venting and additional confined explosion problems of modem interest.

  • PDF

Westgard Multi-Rules의 효율적 적용과 조치사항의 개선 (Efficient Application of Westgard Multi-Rules and Quality Control Implementation Improvement)

  • 정흥수;오윤정;배진수;백진영;황보라;신용환
    • 핵의학기술
    • /
    • 제21권1호
    • /
    • pp.60-64
    • /
    • 2017
  • 검사의 질 향상과 국제표준화의 상용화 정도관리물질을 이용한 Westgard multi-rules 적용의 유용성은 이미 알려져 있다. 그러나 핵의학 체외검사의 특성상 정도관리물질과 환자검체의 동시 계측으로 인한 측정횟수의 증가에 따라 Westgard multi-rules법을 적용함에 있어 어려움이 있다. 이에 본 연구는 핵의학 체외검사에서 상용화 정도관리물질을 이용한 Westgard multi-rules 적용의 유용성과 보완, 개선을 통해 내부정도관리의 효율성 향상을 조사하였다. 2013년 01월부터 2016년 06월까지 삼성서울병원 핵의학과 체외검사실 통합의료시스템에 기록된 총 282건의 적용된 계통오차 multi-rules (22s, 101s)과 117건의 조치사항 기록을 분석하였다. 조치사항은 multi-rules 중 계통오차의 규칙이 적용 되었을 때 기록하는 원인분석으로 정도관리물질 오류, 실험과정 오류, 검사키트 로트번호 관리 오류, 기타 등 총 4개의 대분류로 구성하였다. Westgard multi-rules 적용을 통해 조치사항을 분석한 결과 정도관리물질 오류가 62건, 실험과정 오류가 24건, 검사키트 로트번호 관리오류가 18건, 기타 13건으로 분류되었다. 정도관리물질 오류를 방지하고자 개선사항으로 기존에 각 검사자마다 사용하던 방식을 담당자 지정 방식으로 변경하여 모든 검사의 하루 소비량을 분주하여 공동사용을 하였고, 나머지 오류를 방지하고자 검사 전후 모든 과정을 표준화 하여 검사실내 어느 검사자가 시행 하더라도 일원화할 수 있게 하였다. 정도관리물질 오류를 개선한 결과 해동 후 2일 이내 신선한 물질을 사용 가능하였고 같은 물질을 사용하는 검사끼리 비교가 가능해져 물질에 의한 오류인지 명확해짐으로 계통오차 발생원인이 정도관리물질 오류로 기록하는 건수가 줄어들었다. 또한 정도관리물질의 로트번호 변경 시 교체시기가 같아 관리가 용이해졌고, 물질 사용량의 감소로 경제적 효과를 얻을 수 있었다. 그리고 검사표준화 적용 후, 계통오차의 규칙인 22s와 101s의 발생건수가 개선 전 보다 월 평균 2건 이상 줄어드는 결과를 보였다. Multi-rules의 적용을 통한 계통오차의 빠른 확인을 위해 정도관리물질의 체계적인 관리와 목표값과 표준편자의 설정 및 관리가 바탕이 되어야하며, 계통오차 발생 시 검사의 원인분석을 통한 조치사항을 기록하는 것이 중요함을 확인하였다. 본 실험의 결과로 Westgard multi-rules 적용 분석을 통해 발생 오류의 기재와 원인을 효율적으로 분석함으로써 핵의학 검사 내부정도관리의 질적 향상과 정확하고 신속한 결과보고에 기여할 것으로 사료된다.

  • PDF

Half-cell 기반 multi-wires 접합 공정에서 접합 특성에 영향을 주는 요인과 효율의 상관관계 연구 (A Study on the Relationship between Factors Affecting Soldering Characteristics and Efficiency of Half-cell Soldering Process with Multi-wires)

  • 김재훈;손형진;김성현
    • Current Photovoltaic Research
    • /
    • 제7권3호
    • /
    • pp.65-70
    • /
    • 2019
  • As a demand of higher power photovoltaic modules, shingled, multi-busbar, half-cell, and bifacial techniques are developed. Multi-busbar module has advantage for large amount of light havesting. And, half-cell is high power module for reducing resistive losses and higher shade tolerance. Recently, researches on multi-busbar is focused on reliability according to adhesion and intermetallic compound between Sn-Pb solder and Ag electrode. And half-cell module is researched to comparing with full-sized cell module for structure difference. In this study, we investigated the factors affecting to efficiency and adhesion of multi-wires half-cell module according to wire thickness, solder thickness, and flux. The results of solar simulator and peel test was that peel strength and efficiency of soldered cell is not related. But samples with flux including high solid material showed high efficiency. The results of FE-SEM and EDX line scan on cross-section between wire and Ag electrode for different flux showed thickness of solder joint between wire and Ag electrode is increasing through solid material increasing. Flux including high solid material would affect to solder behavior on Ag electrode. Higher solid material occurred lower growth of IMC layer because solder permeate to sider of wire ribbon than Ag electrode. And it increased fill factor for high efficiency. In soldering process, amount of solid material in flux and solder thickness are the factor related with characteristic of soldered photovoltaic cell.

Single and multi-material topology optimization of CFRP composites to retrofit beam-column connection

  • Dang, Hoang V.;Lee, Dongkyu;Lee, Kihak
    • Computers and Concrete
    • /
    • 제19권4호
    • /
    • pp.405-411
    • /
    • 2017
  • Carbon Fiber Reinforced Plastic (CFRP) has commonly been used to strengthen existing RC structures. Wrapping the whole component with CFRP is an effective method and simple to execute. Besides, specific configuration of CFRP sheets (L, X and T shape) has also been considered in some experiments to examine CFRP effects in advance. This study aimed to provide an optimal CFRP configuration to effectively retrofit the beam-column connection using continuous material topology optimization procedure. In addition, Moved and Regularized Heaviside Functions and penalization factors were also considered. Furthermore, a multi-material procedure was also used to compare with the results from the single material procedure.

Multi-step Metals Additive Manufacturing Technologies

  • Oh, Ji-Won;Park, Jinsu;Choi, Hanshin
    • 한국분말재료학회지
    • /
    • 제27권3호
    • /
    • pp.256-267
    • /
    • 2020
  • Metal additive manufacturing (AM) technologies are classified into two groups according to the consolidation mechanisms and densification degrees of the as-built parts. Densified parts are obtained via a single-step process such as powder bed fusion, directed energy deposition, and sheet lamination AM technologies. Conversely, green bodies are consolidated with the aid of binder phases in multi-step processes such as binder jetting and material extrusion AM. Green-body part shapes are sustained by binder phases, which are removed for the debinding process. Chemical and/or thermal debinding processes are usually devised to enhance debinding kinetics. The pathways to final densification of the green parts are sintering and/or molten metal infiltration. With respect to innovation types, the multi-step metal AM process allows conventional powder metallurgy manufacturing to be innovated continuously. Eliminating cost/time-consuming molds, enlarged 3D design freedom, and wide material selectivity create opportunities for the industrial adoption of multi-step AM technologies. In addition, knowledge of powders and powder metallurgy fuel advances of multi-step AM technologies. In the present study, multi-step AM technologies are briefly introduced from the viewpoint of the entire manufacturing lifecycle.

ZnS/$Na_3AlF_6$/ZnS 박막의 Cu 반사층을 이용한 광 특성 (The optical properties of ZnS/$Na_3AlF_6$/ZnS multi-layered thin film with Co reflection layer)

  • 김준식;장건익
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.322-323
    • /
    • 2008
  • Multi layered thin films with ZnS/$Na_3AlF_6$/ZnS were deposited on glass substrate by thermal evaporator precess and simulated by using EMP(Essential Macleod Program). EMP is a comprehensive software package to design and analyse the optical characteristics of multi-layered thin film. ZnS and $Na_3AlF_6$ were selected as a high refractive index and low refractive index material respectively. Additionally Cu was chosen as mid reflective material. Optical properties including color effect were systematically studied. in terms of different optical thickness of low refractive index material. The optical thickness of $Na_3AlF_6$ was changed as 0.25, 0.5, 0.75 and $1.0\lambda$. The film with 0.25, 0.5, 0.75 and $1.0\lambda$. of optical thickness showed mixed color range between bluish green and red purple, yellowish green and bluish green, purple and mixed color range of green and purple respectively.

  • PDF