• Title/Summary/Keyword: multi layer perceptron

Search Result 436, Processing Time 0.027 seconds

Modal parameters based structural damage detection using artificial neural networks - a review

  • Hakim, S.J.S.;Razak, H. Abdul
    • Smart Structures and Systems
    • /
    • v.14 no.2
    • /
    • pp.159-189
    • /
    • 2014
  • One of the most important requirements in the evaluation of existing structural systems and ensuring a safe performance during their service life is damage assessment. Damage can be defined as a weakening of the structure that adversely affects its current or future performance which may cause undesirable displacements, stresses or vibrations to the structure. The mass and stiffness of a structure will change due to the damage, which in turn changes the measured dynamic response of the system. Damage detection can increase safety, reduce maintenance costs and increase serviceability of the structures. Artificial Neural Networks (ANNs) are simplified models of the human brain and evolved as one of the most useful mathematical concepts used in almost all branches of science and engineering. ANNs have been applied increasingly due to its powerful computational and excellent pattern recognition ability for detecting damage in structural engineering. This paper presents and reviews the technical literature for past two decades on structural damage detection using ANNs with modal parameters such as natural frequencies and mode shapes as inputs.

Recognition of Korean Isolated Digits Using Classification and Prediction Neural Networks (예측형과 분류형 신경망을 이용한 한국어 숫자음 인식)

  • 한학용;김주성;고시영;허강인;안점영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.12B
    • /
    • pp.2447-2454
    • /
    • 1999
  • This paper proposes a N-APPEM(Nonlinear A Posteriori Probability Estimation Method) with a frame normalization method to conventional classification network to increase speech recognition ability. It also tests the recognition ability of the classification and prediction neural networks for the Korean isolated digits. From the experimental results, the prediction network with MLP(Multi-Layer Perceptron) achieves the highest recognition ability of 98.0%. The prediction requires very complicated networks increased linearly with the number of incoming speech categories. However, the classification network with the N-APPEM and the normalization improves the recognition ability up to 85.5% with a sin81e network, which is almost 12.0% improvement.

  • PDF

A Feature Vector Extraction Method For the Automatic Classification of Power Quality Disturbances (전력 외란 자동 식별을 위한 특징 벡터 추출 기법)

  • Lee, Chul-Ho;Lee, Jae-Sang;Cho, Kwan-Young;Chung, Ji-Hyun;Nam, Sang-Won
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.404-406
    • /
    • 1996
  • The objective of this paper is to present a new feature-vector extraction method for the automatic detection and classification of power quality(PQ) disturbances, where FFT, DWT(Discrete Wavelet Transform), and data compression are utilized to extract an appropriate feature vector. In particular, the proposed classifier consists of three parts: i.e., (i) automatic detection of PQ disturbances, where the wavelet transform and signal power estimation method are utilized to detect each disturbance, (ii) feature vector extraction from the detected disturbance, and (iii) automatic classification, where Multi-Layer Perceptron(MLP) is used to classify each disturbance from the corresponding extracted feature vector. To demonstrate the performance and applicability of the proposed classification algorithm, some test results obtained by analyzing 7-class power quality disturbances generated by the EMTP are also provided.

  • PDF

A Study on the Experimental Application of the Artificial Neural Network for the Process Improvement (공정개선을 위한 인공신경망의 실험적 적용에 관한 연구)

  • 한우철
    • Journal of the Korea Society of Computer and Information
    • /
    • v.7 no.1
    • /
    • pp.174-183
    • /
    • 2002
  • In this paper a control chart pattern recognition methodology based on the back propagation algorithm and Multi layer perceptron, a neural computing theory, is presented. This pattern recognition algorithm, suitable for real time statistical process control. evaluates observations routinely collected for control charting to determine whether a Pattern, such as a cycle. trend or shift, which is exists in the data. This approach is promising because of its flexible training and high speed computation with low-end workstation. The artificial neural network methodology is developed utilizing the delta learning rule, sigmoid activation function with two hidden layers. In a computer integrated manufacturing environment, the operator need not routinely monitor the control chart but, rather, can be alerted to patterns by a computer signal generated by the proposed system.

  • PDF

Motion Vector Resolution Decision Algorithm based on Neural Network for Fast VVC Encoding (고속 VVC 부호화를 위한 신경망 기반 움직임 벡터 해상도 결정 알고리즘)

  • Baek, Han-gyul;Park, Sang-hyo
    • Journal of Broadcast Engineering
    • /
    • v.26 no.5
    • /
    • pp.652-655
    • /
    • 2021
  • Among various inter prediction techniques of Versatile Video Coding (VVC), adaptive motion vector resolution (AMVR) technology has been adopted. However, for AMVR, various MVs should be tested per each coding unit, which needs a computation of rate-distortion cost and results in an increase in encoding complexity. Therefore, in order to reduce the encoding complexity of AMVR, it is necessary to effectively find an optimal AMVR mode. In this paper, we propose a lightweight neural network-based AMVR decision algorithm based on more diverse datasets.

Prediction of Wind Power Generation using Deep Learnning (딥러닝을 이용한 풍력 발전량 예측)

  • Choi, Jeong-Gon;Choi, Hyo-Sang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.2
    • /
    • pp.329-338
    • /
    • 2021
  • This study predicts the amount of wind power generation for rational operation plan of wind power generation and capacity calculation of ESS. For forecasting, we present a method of predicting wind power generation by combining a physical approach and a statistical approach. The factors of wind power generation are analyzed and variables are selected. By collecting historical data of the selected variables, the amount of wind power generation is predicted using deep learning. The model used is a hybrid model that combines a bidirectional long short term memory (LSTM) and a convolution neural network (CNN) algorithm. To compare the prediction performance, this model is compared with the model and the error which consist of the MLP(:Multi Layer Perceptron) algorithm, The results is presented to evaluate the prediction performance.

Employing TLBO and SCE for optimal prediction of the compressive strength of concrete

  • Zhao, Yinghao;Moayedi, Hossein;Bahiraei, Mehdi;Foong, Loke Kok
    • Smart Structures and Systems
    • /
    • v.26 no.6
    • /
    • pp.753-763
    • /
    • 2020
  • The early prediction of Compressive Strength of Concrete (CSC) is a significant task in the civil engineering construction projects. This study, therefore, is dedicated to introducing two novel hybrids of neural computing, namely Shuffled Complex Evolution (SCE) and Teaching-Learning-Based Optimization (TLBO) for predicting the CSC. The algorithms are applied to a Multi-Layer Perceptron (MLP) network to create the SCE-MLP and TLBO-MLP ensembles. The results revealed that, first, intelligent models can properly handle analyzing and generalizing the non-linear relationship between the CSC and its influential parameters. For example, the smallest and largest values of the CSC were 17.19 and 58.53 MPa, and the outputs of the MLP, SCE-MLP, and TLBO-MLP range in [17.61, 54.36], [17.69, 55.55] and [18.07, 53.83], respectively. Second, applying the SCE and TLBO optimizers resulted in increasing the correlation of the MLP products from 93.58 to 97.32 and 97.22%, respectively. The prediction error was also reduced by around 34 and 31% which indicates the high efficiency of these algorithms. Moreover, regarding the computation time needed to implement the SCE-MLP and TLBO-MLP models, the SCE is a considerably more time-efficient optimizer. Nevertheless, both suggested models can be promising substitutes for laboratory and destructive CSC evaluative models.

Comparison Analysis of Machine Learning for Concrete Crack Depths Prediction Using Thermal Image and Environmental Parameters (열화상 이미지와 환경변수를 이용한 콘크리트 균열 깊이 예측 머신 러닝 분석)

  • Kim, Jihyung;Jang, Arum;Park, Min Jae;Ju, Young K.
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.2
    • /
    • pp.99-110
    • /
    • 2021
  • This study presents the estimation of crack depth by analyzing temperatures extracted from thermal images and environmental parameters such as air temperature, air humidity, illumination. The statistics of all acquired features and the correlation coefficient among thermal images and environmental parameters are presented. The concrete crack depths were predicted by four different machine learning models: Multi-Layer Perceptron (MLP), Random Forest (RF), Gradient Boosting (GB), and AdaBoost (AB). The machine learning algorithms are validated by the coefficient of determination, accuracy, and Mean Absolute Percentage Error (MAPE). The AB model had a great performance among the four models due to the non-linearity of features and weak learner aggregation with weights on misclassified data. The maximum depth 11 of the base estimator in the AB model is efficient with high performance with 97.6% of accuracy and 0.07% of MAPE. Feature importances, permutation importance, and partial dependence are analyzed in the AB model. The results show that the marginal effect of air humidity, crack depth, and crack temperature in order is higher than that of the others.

Obesity Level Prediction Based on Data Mining Techniques

  • Alqahtani, Asma;Albuainin, Fatima;Alrayes, Rana;Al muhanna, Noura;Alyahyan, Eyman;Aldahasi, Ezaz
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.3
    • /
    • pp.103-111
    • /
    • 2021
  • Obesity affects individuals of all gender and ages worldwide; consequently, several studies have performed great works to define factors causing it. This study develops an effective method to trace obesity levels based on supervised data mining techniques such as Random Forest and Multi-Layer Perception (MLP), so as to tackle this universal epidemic. Notably, the dataset was from countries like Mexico, Peru, and Colombia in the 14- 61year age group, with varying eating habits and physical conditions. The data includes 2111 instances and 17 attributes labelled using NObesity, which facilitates categorization of data using Overweight Levels l I and II, Insufficient Weight, Normal Weight, as well as Obesity Type I to III. This study found that the highest accuracy was achieved by Random Forest algorithm in comparison to the MLP algorithm, with an overall classification rate of 96.7%.

GNSS NLOS Signal Classifier with Successive Correlation Outputs using CNN

  • Sangjae, Cho;Jeong-Hoon, Kim
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • The problem of classifying a non-line-of-sight (NLOS) signal in a multipath channel is important to improve global navigation satellite system (GNSS) positioning accuracy in urban areas. Conventional deep learning-based NLOS signal classifiers use GNSS satellite measurements such as the carrier-to-noise-density ratio (CN_0), pseudorange, and elevation angle as inputs. However, there is a computational inefficiency with use of these measurements and the NLOS signal features expressed by the measurements are limited. In this paper, we propose a Convolutional Neural Network (CNN)-based NLOS signal classifier that receives successive Auto-correlation function (ACF) outputs according to a time-series, which is the most primitive output of GNSS signal processing. We compared the proposed classifier to other DL-based NLOS signal classifiers such as a multi-layer perceptron (MLP) and Gated Recurrent Unit (GRU) to show the superiority of the proposed classifier. The results show the proposed classifier does not require the navigation data extraction stage to classify the NLOS signals, and it has been verified that it has the best detection performance among all compared classifiers, with an accuracy of up to 97%.